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Abstract. We hypothesized that phosphorus addition would result in plant morphological 
changes and changes in rhizosphere carboxylates among wheat and canola cultivars in 
different acidic soils. Concentration of carboxylates in the rhizosphere extracted with 0.2 mM 
CaCl2, expressed per unit root dry mass. Dry weight of root and shoot were measures after 
harvest; total root length, and average root diameter were determined using a scanner. Also, 
the concentration of phosphorus (Colwell P) in rhizosphere and bulk soil was measured using 
UV-VIS Spectrophotometer. Shoot and root dry mass of wheat and canola increased 
significantly with increasing P supply. There was significant difference in total root length 
and average root diameter between treatments and genotypes in both acidic soils. Citrate was 
the dominant carboxylate in the rhizosphere of wheat genotypes, and malate was the second 
one. In canola genotypes, concentration of carboxylates in the rhizosphere were at least 10 
times higher than rhizosphere of wheat genotypes. Surprisingly, malonate which there was 
not in the rhizosphere of wheat genotypes, was the most important carboxylate in the 
rhizosphere of canola genotypes followed by malate and citrate. This study showed there 
were significant differences between plant P-efficient and non-efficient in acidic soils when 
we used different level of P. 
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1. Introduction 

Phosphorus (P) is one of the most abundant elements in soil and is present in both inorganic and 

organic forms [1]. P is an essential plant nutrient, and its deficiency in soils severely restricts crop 

yields [2]. Only 0.1% of the total soil P is available to plants because of poor solubility and 

fixation with other metallic elements in soil (Ca-P and Mg-P in alkaline soils or Fe-P and Al-P in 

acidic soils) [1], [3]. Thus, farmers need to use relatively large amounts of phosphorus to achieve 

good plant growth, which may have detrimental effects on both the environment and economy; 
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for example, many Australian inland rivers are eutrophicated due to excessive P applications in 

agriculture and horticulture [4]-[6]. It is therefore crucial to acknowledge the plant adaptations to 

the low accessibility of P in order to enhance the efficacy of plant P-acquisition, in fact to absorb 

the less usable soil P [7], [8]. Consequently, P-fertilizer application and environmental effects 

need to be reduced, and sustainable food supply should be guaranteed. 

A widely agreed goal is the production of agricultural genotypes and cultivars which yield well 

when grown in soils with lower extractable P concentrations compared with those commonly 

required for high yields. Because of study on rhizosphere/non-rhizosphere in this research, it is 

worth mentioning that the structure of rhizosphere communities differs from that in the bulk soil 

[9], and compared to bulk soil, phosphatase activity in the rhizosphere is highest, with higher 

levels of microbial activity [9], [10]. This project will deal with wheat (Triticum aestivum L.) and 

canola (Brassica napus), as two important crops grown in acidic soils in Western Australia. Soil 

acidity represents a major growth-limiting factor in plant production [11]. In Western Australia, 

approximately 4.25 million hectares of land are currently acidic, or at risk of becoming acidic, 

and around 10% of agricultural soil are becoming acidic annually. The availability of certain 

nutrients such as phosphorus can reduce with low soil pH and consequently concentrations of 

toxic elements such as aluminum and iron in the soil solution can increase [12].  

Organic acid synthesis is well known and generally recognized that bacteria use this strategy as 

the key mechanism for solubilization of P. Organic acids have the ability to enhance the amount 

of P present in the soil [13]. This event happens because of the organic acids chelating properties. 

In addition, the synthesis of organic acids contributes to the acidification of the bacterial 

environment; this will facilitate apatite solubilization through proton substitution of H+ and 

release of Ca2+. Low molecular weight carboxylates are prevalent compounds which influencing 

metabolism or organisms in the soil. Carboxylates can activate soil solid P depending on the 

chemical processes at the solid phase of the soil.  

Root exudation is primarily a passive mechanism that occurs between the intact root cell 

cytoplasms and the external rhizosphere (substrate about the root area) that contributes to product 

releases in the rhizosphere. Banksia grandis an Australian Proteaceae species, when grown on 

sand comprising either poorly soluble Al-phosphate or Fe-phosphate as the only resource of P, 

adjusted its exudation template, and developed reasonably well on both source of P. The role of 

the P produced by carboxylates to plant growth is challenging to measure though [14] for 

Kennedia spp. documented a positive correlation between level of rhizosphere carboxylates and 

plant P volume.  

The combination of organic anions of root exudation is incredibly changeable and relies on plant 

species. Malate and citrate seem to be the key ingredients generated during P deficiency by roots. 

Various organic anions demonstrate varying potential to mobilize P in soil; in most cases, citrate 
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is the most efficient [15]. Sampling procedures of organic anions have a significant impact on the 

defined data of rhizosphere organic anion concentrations [16]. The 'effective' organic anions in 

the rhizosphere are highly dependent on the level of root exudates that is indeed defined by stage 

of plant development, internal P concentrations [17], plant species and genotype [18], the volume 

of organic anions missed by soil sorption and soil microorganism breakdowns [19]. 

We hypothesized that P addition would result in plant morphological changes (like generating 

more root and shoot), changes in the rhizosphere carboxylates among wheat and canola cultivars 

in different acidic soils and the genotypes are P-efficient should show better result rather than 

inefficient genotypes. 

2. Materials and Methods 

Two different acidic soils were collected from two different regions from Western Australia 

named Kalannie and Dorper. The air-dried soils were sieved to 2 mm and thoroughly mixed. 

Kalannie soil has the following properties: pH (CaCl2) 3.9; Colwell P 9 mg kg−1; Colwell K 63 

mg kg−1; NH4+ 1.65 mg kg−1; and NO3 15.8 mg kg−1. Dorper soil has the following properties: 

pH (CaCl2) 4.5; Colwell P 6 mg kg−1; Colwell K 136 mg kg−1; NH4+ 3 mg kg−1; and NO3 25 

mg kg−1. Basal nutrients (mg kg−1 soil) were added to the soil at the following rates showed in 

the table 1. NH4NO3 95.2, K2SO4 139.9, KCl 50.0, MgSO4 40.0, CaCl2.2H2O 150.3, 

CuSO4·5H2O 2.0, MnSO4·H2O 10.0, CoSO4.7H2O 0.5, H3BO3 0.7, Na2MoO4·2H2O 0.2, and 

ZnSO4·7H2O 9.0. Phosphorus was added to the soil as FePO4 at a rate of 0, 20 mg P kg−1 soil 

to test the differences between two genotypes are differing in P-efficiency to know that can they 

use P in acidic soils. 

The plant species studied were wheat (Triticum aestivum), and canola (Brassica napus L.). For 

each plant we had two different genotypes differing in P-efficiency. The preliminary test showed 

that wheat genotypes named Westonia and Janz and canola genotypes named Drum and Outback 

are different in P efficiency. Westonia and Drum were more P efficient. Seeds of similar weight 

per species were germinated on wet filter paper at 25°C in the dark for 24 h. After radicle 

emergence, eight uniform seeds were sown into a pot containing 3.5 kg air-dried soil equivalent 

with four replicates. Phosphorus was added as FePO4 at a rate of 20 mg P kg–1 soil. This rate 

was chosen to prevent severe P deficiency but still provide an inadequate P supply so the 

differences in releasing carboxylates between the genotypes that are different in P efficiency 

should be different. After germination, seedlings were thinned to four plants per pot. The pots 

were watered with deionized water to maintain 70% of field capacity. For each soil type, there 

were four unplanted control pots. The experiment was conducted under glasshouse conditions at 

The University of Western Australia (31°98’ S, 115°81′ E) from 10 May to 30 June 2019 with 

natural light at 22±2°C. All pots from the four replicates were randomly relocated within the area 
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occupied by the experiment weekly to minimize the influence of temperature and light gradients 

in the glasshouse. After 7 weeks of growth, plants were harvested in order of replicate. 

Roots were further rinsed in deionized water before shoots were separated. Shoots and roots were 

oven-dried at 70 °C for 5 days. Once harvest was complete, total root length, and average root 

diameter (of representative subsamples) were determined using an Epson 1680 scanner and 

WinRHIZO 4.1 computer software (Regent Instruments Inc., Quebec, Canada). Also, the 

concentration of phosphorus (Colwell P) in rhizosphere and bulk soil was measured using UV-

VIS Spectrophotometer based on Rayment and Lyons [20].  

The four plants in each pot were removed and placed into a tray where their roots and adhered 

soil were carefully teased apart from the bulk soil, taking care not to break roots. Once the root 

systems could be lifted from the tray without roots breaking, they were held by the base of the 

shoots above the tray and gently shaken; the soil remaining adhered to the roots was classified as 

the rhizosphere. The root systems from each pot were then placed into a 500 ml beaker and rinsed 

with 50 ml of 0.2 mM CaCl2 solution using a large syringe until all visible soil had been washed 

into the solution. One millilitre of the solution was then filtered through a 0.22 μm Acrodisc 

syringe filter into a 1 ml Waters HPLC vial containing 25 μl of orthophosphoric acid. Vials were 

immediately capped and placed on ice before being transferred to a −20 °C freezer at regular 

intervals. Rhizosphere carboxylates were analysed by reversephase liquid chromatography, as 

described by Cawthray [21] except for oxalate where the method detailed in [22] was followed. 

The amount of rhizosphere carboxylate was calculated relative to root DM. 

2.1. Data Analyses 

Rhizosphere carboxylates that were below the detection limit were given a value of zero. Acetate 

were present in a small number of pots and did not vary consistently with plant species; data are 

therefore not presented or included in calculations of total carboxylates. For each measured 

variable, data were examined for outliers and normality, and transformations undertaken if 

required. Data were then analysed in Genstat version 18.1 (Lawes Agricultural Trust, Rothamsted 

Experimental Station, Harpenden, UK) using a two-way ANOVA to assess the effect of the 4 

genotypes on each variable; the effect of replicate was included in the analysis. The means for 

each species/line were graphed with the standard error of the mean using Excel.  

3. Results and Discussions 

There was significant difference in plant growth among treatments, genotypes and soils. Shoot 

and root dry mass of wheat and canola increased significantly with increasing FePO4 supply (Fig. 

1, 2). Dry mass of wheat genotypes was higher which for example in Westonia genotype shoot 

and root dry mass at 20 mg P /kg soil were increased by 32% and 34% in comparison with 0 P in 

Kalannie soil, respectively (Fig. 1a, 1b). There was a same result in Dorper soil regarding the 
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plant growth in wheat genotypes. Westonia showed a higher growth rate in Dorper soil with 49% 

in root dry mass and 30% in shoot dry mass rather than Janz genotype (Fig. 1a, 1b). It is worth 

mentioning that findings of Schulthess et al. [23] and Manske et al. [24] confirms that P use 

efficiency in wheat varied depending on genotypes and can increase the plant growth. The root 

and shoot dry mass of the P-inefficient wheat genotype, Janz, at 20 mg P /kg soil in comparison 

with 0 P had a better growth which indicate that adding 20 mg P /kg soil could help this genotype 

to grow better rather than the control (Fig. 1a, 1b). But the most important result is the same 

growth rate for Westonia 0P and Janz 20P, suggesting the P-efficient genotypes (Westonia) could 

show same result regarding root and shoot dry weight without receiving P in both soils. 

 
Figure 1. Results of comparing a) root and b) shoot dry weight related to wheat plants 

(Westonia & Janz) growing with different rates of P in different acidic soils. Values are means + 
standard error (SE) of four replicates. Means with the same letter are not significantly different 

(P = 0.05) 

The situation was the same in canola genotypes and the best reaction was seen at Drum genotype 

(P-efficient genotype) with 36% and 33% in shoot and root respectively in Kalannie soil (Fig. 2a, 

2b). In addition, Drum in Dorper soil illustrates a better response to acidic soils and different rates 

of phosphorus with a better result in root and shoot dry mass (Fig. 2 a, b). Outback, another canola 

genotypes, showed a higher growth at 20 mg P /kg soil in comparison with 0 P regarding its root 

and shoot dry mass (Fig. 2a, 2b). Korkmaz and Altıntaş [22] tested ten canola genotypes at three 

P rates and indicated that the adaptation of canola genotypes to low levels of soil P is closely 

related to genotypes differ in P-use efficiency. P efficient plants are able to produce high yield at 

relatively low soil P supplies [25]. Like wheat genotypes, the same growth rate for Drum 0P and 

Outback 20P proved that the P-efficient genotypes (Drum) could show same result regarding root 

and shoot dry weight without receiving P in both soils. 
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Figure 2. Results of comparing a) root and b) shoot dry weight related to canola plants 

(Drum & Outback) growing with different rates of P in different acidic soils. Values are means 
+ standard error (SE) of four replicates. Means with the same letter are not significantly 

different (P = 0.05) 

There was significant difference in total root length and average root diameter between treatments 

and genotypes in both soils (Fig. 3, 4). In wheat genotypes, Westonia indicated a longer and 

thicker root in average in Kalannie soil in comparison to other treatments (soil and P level), and 

Janz in Dorper soil was the weakest (Fig. 3a, 3b). In canola genotypes, Drum showed a significant 

difference in total root length and average root diameter in comparison to Outback in both soils 

(Fig. 4a, 4b). Same like Janz, Outback depicted the lowest numbers, especially in Dorper soil they 

had only 74% of Drum’s total root length in Kalannie soil (Fig. 4a), 20 mg P /kg soil in 

comparison to 0 P illustrated a significant difference in all treatments which describing even 

adding 20 mg P /kg soil could increase the plant growth in P-efficient genotypes. Root length 

density are some factors that may related to the genotypic differences in P uptake efficiency [2]. 

As mentioned earlier, root characteristics is the main factor that influence P uptake efficiency. 

Mean root diameter varied in most cases by less than 47.73% across soils, with mean values of 

0.304 mm for wheat, and 0.272 mm for wheat roots. But the most important result is the same 

growth rate of Westonia and Drum with 0P against Janz and Outback 20P, suggesting the P-

efficient genotypes (Westonia and Drum) could indicate same result regarding total root length 

and average root diameter without receiving P in both soils. Total root length in Westonia (P-

efficient genotype) showed a little bit better result in comparison to Janz in Dorper soil. 
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Figure 3. Results of comparing a) total root length and b) average root diameter related to 

wheat plants (Westonia & Janz) growing with different rates of P in different acidic soils. 
Values are means + standard error (SE) of four replicates. Means with the same letter are not 

significantly different (P= 0.05) 

This experiment showed that wheat and canola genotypes were greatly affected by soil types and 

they had a better growth in Kalannie soil compared to Dorper soil. Low productivity in acid soil 

has been identified as a significant form of land degradation in Australia. Surface and subsoil 

acidity is common in Australia; around 50 million ha of surface soil and 23 million ha of subsoils 

in Australia are affected by soil acidity [26]. So, the acidity of the soils is one of the most 

important factors for these results. The genetic structures of variety and root lengths might cause 

differences in grain yield and nutrient use efficiency among the cultivars. Soil type, genotypic 

variability and phosphorus rates are the factors affecting P uptake by plants. Among mentioned 

factors, genotypic differences have been indicated to be more related to P use efficiency [27]. It 

completely shows why P-efficient genotypes (Westonia and Drum) were significantly different 

compared to P-inefficient genotypes. 

 
Figure 4. Results of comparing a) total root length and b) average root diameter related to 

canola plants (Drum & Outback) growing with different rates of P in different acidic soils. 

Values are means + standard error (SE) of four replicates. Means with the same letter are not 
significantly different (P= 0.05) 

Citrate was the dominant carboxylate in the rhizosphere of wheat genotypes (Fig. 5 a), and malate 

was the second one. Westonia had a significantly different citrate in Kalannie soil rather than 

Dorper soil; The highest was Westonia 20 mg P /kg soil in Kalannie soil with 675 nmol/g root 

DM and the lowest was Janz 0 P in Dorper soil with 154 nmol/g root DM. The amount of malate 

in the wheat genotypes was less than citrate, but the amount of citrate and malate in Westonia 20 
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mg P /kg soil in Dorper soil was less than Janz 0 P in Kalannie soil which describing that Janz in 

Kalannie soil which is a better soil rather than Dorper, could release more malate to liberate more 

P for the plant. The released amount of citrate and malate of Westonia with 0P against Janz 20P 

was almost same, suggesting the P-efficient genotype (Westonia) could release same amount of 

carboxylates while we did not add any P to the soils. 

 
Figure 5. Concentration of carboxylates in the rhizosphere extracted with 0.2 mM CaCl2, 

expressed per unit root dry mass. Results are comparing a) citrate and b) malate related to wheat 
plants (Westonia & Janz) growing with different rates of P in different acidic soils. Values are 
means + standard error (SE) of four replicates. Means with the same letter are not significantly 

different (P= 0.05). 

In canola genotypes, concentration of carboxylates in the rhizosphere were at least 10 times higher 

than rhizosphere of wheat genotypes (Fig. 6a, 6b, 6c). Surprisingly, malonate which there was not 

in the rhizosphere of wheat genotypes, was the most important carboxylate in the rhizosphere of 

canola genotypes with 11.3 umol/g root DM  in Drum 20 mg P/kg soil in Kalannie soil (the 

highest) and 4.8 umol/g root DM in Outback 0 P in Dorper soil (the lowest) (Fig. 6c). After 

malonate, malate was the second more common carboxylate around the rhizosphere of canola 

genotypes followecd by citrate. Between the treatments, 20 mg P /kg soil; between the genotypes, 

Drum; and between the soils, Kalannie soil, indicated a significant difference in comparison to 0 

P, Outback and Dorper respectively (Fig. 6a, 6b, 6c). The released amount of citrate, malonate 

and malate of Drum with 0P against Outback 20P was almost same, suggesting the P-efficient 

genotype (Drum) could release same amount of carboxylates while we did not add any P to the 

soils. In several species, the root-released organic anions in the rhizosphere rise during P 

deficiency. Also there are variations between cultivars or genotypes for same species [28]. In 

general, the concentrations of organic anion shown in the literature may differ from the real 

values; this is because of several factors, for instance, analytical techniques, soil microbial 

activity, soil sorption, the sampling procedure, and the trap solution used [29]. 
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Figure 6. Concentration of carboxylates in the rhizosphere extracted with 0.2 mM CaCl2, 

expressed per unit root dry mass. Results are comparing a) citrate b) malate and c) malonate 

related to canola plants (Drum & Outback) growing with different rates of P in different acidic 
soils. Values are means + standard error (SE) of four replicates. Means with the same letter are 

not significantly different (P= 0.05) 

There was a significant difference between treatments in Colwell P in the rhizosphere (Fig. 7 a, 

b) but in bulk soil there was not any difference. Treatments with 20 mg P /kg soil in wheat and 

canola in both soils were highly significant in comparison to 0 P treatments. As we expected, 

Colwell P was higher in Westonia and Drum 0P (P-efficient genotypes) compared to Janz and 

Outback 0P, respectively. The pH of the soil was measured before and after experiment and it 

showed that the rhizosphere pH has decrease in all pots (samples). Previously it was assumed that 

organic anion exudation may contribute to acidification of the rhizosphere, but it has already been 

properly recognized that exudation of organic anion and acidification of the rhizosphere are both 

spatially coordinated, biochemically independent procedures. Wheat had the smallest average 

root diameter, and therefore compared to canola many long roots, which explored a large soil 

volume. This probably enabled it to access reasonable amounts of readily available P; but in 

canola genotypes the amount of carboxylates covered this problem for Drum and Outback plants 

[30].  
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Figure 7. Results of comparing Colwell P around the rhizosphere of a) wheat and b) canola 

genotypes growing with different rates of P in different acidic soils. Values are means + 
standard error (SE) of four replicates. Means with the same letter are not significantly different 

Comparison with other studies is problematic as rhizosphere carboxylate amount will differ with 

soil type [31], plant age [32] and different genotypes and may decline with rising the available P 

[33]. Also, the process has been used for measuring the carboxylates is different; for example, in 

this study the amount of carboxylates calculated based on root dry mass. In addition, some organic 

anions may originate from degraded roots; not all soil in the rhizosphere can be collected for 

organic anion extraction; various soil attributes provide different sorption capabilities, and soil 

microbes can dissolve organic anions or liberate organic anions to soil [34]. Therefore, the 

findings can be affected by 'inaccurate' organic anion information. Moreover, plants prefer to use 

root architecture or mycorrhizal colonization approaches to reach soil P where there is desirable 

volume of P accessible in the rhizosphere. On the contrary, root exudates will be more efficient 

where there is an exceptionally low volume of accessible P to maximize the concentration of P 

throughout the rhizosphere and thereby have sufficient P for the acquisition of the plant. Some 

researchers such as Wissuwa [35] and Korkmaz et al. [36] reported that genotypic differences 

might be an essential strategy for improved P acquisition during low P availability in soil. Also, 

rhizosphere microorganisms, especially indigenous phosphate solubilizing bacteria (PSB), are 

able to enhance or reduce the availability of P to plants [9], [37], [38] so, finding the relationship 

among PSBs, plants and the amount of released carboxylates is essential to investigate, which it 

would be the next experiment. 

4. Conclusions 

In conclusion, this study showed there are significant differences between P-efficient genotypes 

and P-inefficient in acidic soils and all plant growth factors shown different reactions to this 

situation and so the amount of carboxylates around the rhizosphere will differ.  
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