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Abstract. In the queuing system, inter-arrival variable and service time variable are 

probabilistic and its pattern follow a Poisson distribution. Simulations experiment for 

performance measurement of a queuing system required random data. In practice, random 

data is built using an application program. Pseudorandom data generated from application 

programs often have different patterns of randomness, although in each experiment simulated 

the same data distribution. Level of randomness may cause the results of simulation 

experiments experienced statistically significant deviations, especially on problems with 

stochastic variables. Statistical deviation can cause errors in interpreting the results of 

simulation experiments, especially in the assessment of the performance of the queuing 

system. It is required to evaluate whether the level of randomness of pseudorandom data 

effect on simulation results of performance measurement of a system. Simulation 

experiments on a simple queuing system (M / M / 1) were carried out by using a 

pseudorandom number generator. Application program used to generate pseudorandom 

numbers is Fortran90. The experimental results show that the greater the amount of 

pseudorandom data, the greater the statistical deviations occur, and the smaller the degree of 

randomness of data. This behaviour affects the results of the simulation system in which 

there is a probabilistic variable that require random data to conduct simulation 
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Abstrak. Dalam sistem antrian, antara variabel kedatangan dan variabel waktu pelayanan 

adalah probabilistik dan polanya mengikuti distribusi Poisson. Eksperimen simulasi untuk 

pengukuran kinerja sistem antrian diperlukan data acak. Dalam praktiknya, data acak 

dibangun menggunakan program aplikasi. Data pseudorandom yang dihasilkan dari 

program aplikasi tersebut sering memiliki pola acak yang berbeda, meskipun dalam setiap 

percobaan disimulasikan menggunakan distribusi data yang sama. Tingkat keacakan dapat 

menyebabkan hasil percobaan simulasi mengalami penyimpangan yang signifikan secara 

statistik, terutama pada masalah dengan variabel stokastik. Penyimpangan statistik dapat 

menyebabkan kesalahan dalam menafsirkan hasil eksperimen simulasi, terutama dalam 

penilaian kinerja sistem antrian. Hal ini diperlukan untuk mengevaluasi apakah tingkat 

keacakan data pseudorandom berpengaruh pada hasil simulasi pengukuran kinerja suatu 

sistem. Eksperimen simulasi pada sistem antrian sederhana (M / M / 1) dilakukan dengan 

menggunakan generator nomor pseudorandom. Program aplikasi yang digunakan untuk 

menghasilkan nomor pseudorandom adalah Fortran90. Hasil eksperimen menunjukkan 

bahwa semakin besar jumlah data pseudorandom, semakin besar penyimpangan statistik 

terjadi, dan semakin kecil tingkat keacakan data. Ini mempengaruhi hasil dari sistem 

simulasi di mana ada variabel probabilistik yang memerlukan data acak untuk melakukan 

simulasi 
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1 Introduction 

In connection with the increasingly complex real-world problems, a problem will be more easily 

managed and controlled if the problem is seen as a system where each component in it has a 

causal relationship both directly and indirectly. System performance can be evaluated by 

conducting simulations. In the future, simulations will be increasingly used to assess the 

performance of a system. This is because systems with a large number of components will be 

more easily evaluated by simulations. 

However, the existence of uncertain variables requires the use of random numbers with 

appropriate data distribution [1][2]. Uniformly distributed  random numbers can be generated 

through application programs such as Fortran, Basic, PL / 1, MS Excel. In simulating a discrete 

event using random data it is necessary to do a randomization test first to ensure that data can be 

accepted randomly following the desired data distribution, at a level or interval of confidence. 

Several studies regarding randomness test have shown that the data needed for the simulation is 

expected to be completely random [1]-[5]. The question is how much influence the truth of the '' 

data '' has on the simulation results. 

The randomness of a data sequence can be seen from various sides, including from the 

frequency of occurrence of data at each interval class; variations in the distance between one 

data to the next; and patterns of back and forth or fluctuation of data. The most common 

methods used to test the  randomness of a data are frequency test, line test (serial test), poker 

test (poker test), distance test (gap test), and test of increasing and decreasing run [1][4]. The 

selection of one method for randomness testing depends very much on problems that require 

random data. For example, if random data is needed which is uniformly distributed, it is enough 
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to do a frequency test to test randomness. But generally randomness tests are only done using 

one of the test kits, without doing another randomness test. The problem is, in simulating a 

discrete event, the resulting random variables have different patterns, even though the data 

distribution in each simulation is the same [3] [6] [7]. The question is whether the difference in 

the randomness pattern of the data in each simulation has a significant effect on the statistics χ2? 

To answer this question, it is necessary to examine the level of randomness that was generated 

from each randomness test above, whether the level of randomness generated from the three 

randomization tests was the same. If not the same, it is necessary to examine how significant the 

level of difference in randomness and its effect on the simulation results. 

In this study, the randomness of a data sequence generated from the pseudorandom generator is 

evaluated and analyzed. Random data generated from the pseudorandom generator is uniformly 

distributed data, which is then converted into Poisson distributed data [1][8]. The randomness of 

the data was tested in two stages. The first stage is to test the randomness of the data with 

uniform distribution, which is tested from three sides, namely frequency test, gap test and back 

and forth test to get an overview of the level of randomness generated by each randomness test 

tool. Futhermore, the generated random data is converted into Poisson-distributed random data. 

We use this data to simulate discrete events on simple queuing problems to produce an 

overview of system performance expectations. The simulation results are then analyzed to see 

the performance expectations of the queue system and its relationship with each level of 

randomness. Analysis of simulation results is expected to provide an overview of the effect of 

the randomization pattern of data on statistics χ2. Thus a conclusion and suggestion can be made 

regarding what steps should be done or added to each discrete event simulation process with 

random data to obtain more accurate results. The result of this study is can be useful other 

researches related to the study of randomness and other studies that require random data. 

2 .Literature Review 

Statistical errors in the simulation results are generally measured by the interval of expectation 

that contain unexpected values. Of about 50% of all publications regarding simulation studies, 

only 23% of the simulation results are credible information that includes statistical analysis of 

simulation results [9]. 

In its implementation in stochastic simulations, the width of the interval or interval of 

confidence will be smaller along with the amount of data collected. To overcome this there are 

two scenarios. The first scenario is to add the length of the simulation experiment as an input 

parameter to the model. This method is based on the argument that the more the number of 

simulations is carried out, the better the results, and statistical errors that occur are accidental 

factors [10]. 
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The concept of randomization is considered as a special case of the epistemological concept of 

an unpredictable process. Eagle gave an explanation of the concept of intuitive randomization, 

suggesting that the understanding of randomness so far is no longer true completely. Hence, a 

more understanding and philosophical study of randomness is required. Throughout the history 

of producing random numbers, there are rows of random numbers obtained from several sources 

of random numbers "pseudorandom generator", after being tested their randomness shows that 

the sequence of random numbers produced is apparently not very random, depending on the 

type of randomness test [11]. 

2.1. Pseudorandom Randomization Problems 

Random numbers generated through the current application program are not really random, but 

rather are pseudorandom random numbers whose level of randomness in an area of trust is 

sufficient for the user. The pseudorandom process is a process that appears to be  random but 

actualy it is not random. The pseudorandom sequence specifically shows statistical randomness 

when it is produced by a causal process which is a deterministic process as a whole. Such 

process is an easier method to produce pseudorandom numbers than other methods [5][7][ 8].  

The advantage is that random numbers generated can be repeated again with the exact same 

random number results. This behaviour is considered useful to be used as part of software test 

cases. To produce actual random numbers, it is necessary to measure systems that are accurate 

and repeatable from a process that is truly non-deterministic. 

In practice, the algorithmic generators of pseudorandom uniformly distributed numbers (PRNG) 

are generally used to describe randomness in stochastic simulations. The basis of the PRNG 

theory has long been found for example by Knuth 1998, and for the last 50 years, various 

algorithms capable of producing pseudorandom random numbers have been. Technically, all 

random numbers generators are equivalent to PRNG (LC-PRNGs) in producing a periodic 

sequence of numbers. One of them is a recursive algorithm in integer modulo M [9]. Whereas 

for 32-bit computers, the multiplication of LC-PRNG with modulus 231-1 is recommended as 

an acceptable source for randomization modeling [3][8]. There are several generators of random 

numbers that are widely used in modern computer such as GPSS (version H and PC), 

SIMSCRIPT II.5, SIMAN and SLAM II [12]. However, generating pseudorandom numbers in 

real case scenario may raise multiple problems. Therefore the quality of producing random 

numbers and random numbers generated for discrete event simulations needs to be evaluated. 

Evaluation can be done by conducting a study of the results of numerical experiments on 

discrete event simulations using pseudorandom random numbers.   

  



Journal of Computing and Applied Informatics (JoCAI) Vol. 03, No. 02, 2019 108                                         

 

2. 2 Effect of Data Randomization on Simulation Results 

Stochastic simulation or discrete event simulation should be seen as a statistical simulation 

experiment so that analysis of output data is a necessary condition for credible final results. 

There are several tools for conducting simulations, including random number  generator. After 

the design of the simulation model is valid, and the model has been implemented and verified, 

researchers continue to face problems regarding output analysis [4][11]. As another scientific 

paradigm, the output of simulation experiments must be accepted on a fairly small error. If not, 

statistical errors can produce non-credible conclusions. 

3 Research Methodology 

In this study, we conduct a simulation was conducted to estimate the performance of the queue 

system, where customers arrival data on the arrival of customersis built using with 

pseudorandom numbers with Poisson distribution was constructed from pseudorandom 

numbers. The tool used for simulation is the FORTRAN application program for simulation 

programs and generating pseudorandom numbers; MS Excel to do some calculations on 

randomness tests; and table χ2 for randomness test data and statistical theory to assess statistical 

deviations and so on, and QM (Quantitative Management) application programs to calculate the 

performance of the queue system. 

 

As our test case scenario, we develop a system that simulate a mini market with 1 cash register. 

Sung a simple queue system model (M / M / 1) where M represents the average arrival of 

customers, M represents the service level, and 1 in the service facilities in the system or one 

channel. 

 

Distribution of potential customer arrivals time follows the Poisson distribution. Service  is set 

to follow the First Come First Serve rule. We use a single channel service in our scenario. 

Service distribution follows a Poisson distribution (λ <μ). System capacity is assumed to be 

unlimited, and there is no rejection. Simulations are carried out in a simple (M / M / 1) queuing 

system, such as a cash register at a supermarket. At the supermarket the number of lanes is 

single, the level of customer arrivals is Poisson distribution, the service time is exponentially 

distributed, and the queue size is unlimited. The queue system follows the First In First Out rule.   

    

Notation : 

N   = number of customers in the system 

Pn  = the certainty probability of the customer in the system 

λ  = the average number of customers come per unit time 

μ  = the average number of customers served per unit time 
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Po  = probability of no customer in system 

P  = level of intensity of service facilities 

L  = average number of customers expected in the system 

Lq  = expected number of customers waiting in the system 

W  = the time expected by customer while in the system 

Wq  = the time expected by customer while waiting inside queue 

1 / μ  = average service time 

1 / λ  = average time between arrivals 

 S  = number of service facilities 

Intensity or Performance =  = /   < 1.0   

Poisson distribution for simple queue problems : 

𝐹𝐼 = ∑
∝

𝑋𝐼!

𝑥𝑖.𝑒−∝∝
𝑖=𝑏                              (1) 

                                                                    

    

where Fi = Poisson probability on the i-th category ; e = 2.7182  

 

Simulation is done by building random numbers for customer arrival rates. The number of 

random numbers used varies, namely 100, 500, 1000, 5000, 7500, and 10000. The random 

numbers generated are then tested for randomness by carrying out statistical tests, namely 

frequency test, gap test, and forward test (Run test). Analysis of number randomness based on 

randomness test results. 

       

For Poisson distribution data in this study, the testing phase is: 

a. Randomness test 

Hypothesis: 

H0: Pseudorandom data is random 

H1: Pseudorandom data is not random 

    Statistical tests: 

𝑧 =  
𝑟 − {

2 (𝑛1𝑛2)
𝑛1 +  𝑛2

} + 1

√
2𝑛1𝑛2(2𝑛1𝑛2 −  𝑛1𝑛2

(𝑛1 + 𝑛2)2(𝑛1 +  𝑛2 − 1)

 

 

(2) 

Rejection area : Reject Ho, if Zhit > Zα/2 

  

b. Test on Poisson Distribution 

H0: Pseudorandom data is Poisson distribution 

H1: Pseudorandom data is not Poisson distribution 
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Statistical tests : D=〖Sup〗_x |S(x)- F_(0 )(x)| 

Rejected area : Reject Ho, if  Dhit > D(1-α,n) 

α  = the average of the number of arrivals  

Xi = the number of the i-th arrival per unit time 

Xa = upper limit  ;  Xb = lower limit 

 

The next stage is calculating expectations of system performance, and calculating standard 

deviations or statistical deviations to obtain conclusions regarding estimates of performance. 

4. Result and Discussion 

The queuing system model used in this study is  M / M / 1. The server intensity level is obtained 

from the average number of customers expected in the system and the number of customers 

expected to wait in the queue, the time expected by each customer waiting for service, and the 

time expected by each customer to wait in the queue. The probability that the server is busy, 

namely the probability of a customer having to wait, also called the utilization factor or 

performance measure is 
µ


,  which is the ratio between the level of arrival and the level of 

service. 

 

 

Figure 1. Queuing System (M/M/1) 

 

Analysis of simulation results by comparing the results of the randomness and Poisson 

distribution test: 

a. Transient and steady-state characteristics of the stochastic process 

b. Statistical analysis for steady-state parameters. 

c. Measurement of system performance. 

 

The chi-square statistic is used to determine how well the set observation can be represented by 

a given distribution, where each observation is located in one of the k different categories. If the 

number of events is preserved is Oi, and the expected number of events / events is Ei known for 

each category, then α / 2 statistics can be determined. The calculation results (table 1) shows 

that χ2 observations do not exceed χ2table , then the hypothesis that the random numbers 

generated are truly random, can be accepted at a rejection rate of 5%. 
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Table 1. The value of  χ2, 2
5%, 2

95% 

     N 2 Freq test  Gap test Run test 

100 

 2
obs 6.3 12.46 0.89 

25% 17.33 21.13 9.448 

295% 4.575 5.224 0.697 

500 

 2
obs 24.7 38.9 1.797 

25% 18.3 43.77 11.07 

295% 5.575 18.47 1.114 

1000 

 2
obs 42.1 14.33 2.78 

25% 18.21 21.04 9.55 

295% 4.565 5.33 0.72 

5000 

 2
obs 238.22 433.2 17.88 

25% 18.33 67.5 11.87 

295% 4.57 33.97 1.155 

7500 

 2
obs 342.4 778.8 20.21 

25% 12.59 67.8 9.447 

295% 4.525 36.8 2.944 

10000 

 2
obs 4554 958.223 39.12 

25% 18.31 67.8 16.51 

295% 4.565 34.77 2.744 

 

Likewise, chi-square observation (χ2
obs)   in the three statistical tests for rejection rates is 95% 

greater than χ2
table, particularly  randomly spaced, because χ2 of gap test is much greater than 

χ2
table. Then for N = 100, the hypothesis is that random data is significantly acceptable, even 

though for frequency distribution and back and forth patterns, χ2 is not significantly greater than 

χ2
table. 

This can be caused by the spread of data that is not equally distributed at each interval class in 

the frequency test. Data distribution in each interval class is not evenly distributed, with a 

standard deviation that is quite large, 8.59. It can be seen that the pattern of ups and downs of 

data is not really randomly uniform. The number of ups and downs of the data is as follows: 

Variations between n = 1, with n = 2, 3 and 4 are quite spaced, and not uniform. The value of 

randomness will be more significant if the amount of On is distributed evenly in each category. 

Significant random data hypotheses were accepted if χ2
table (P = 95%) < χ2

obs < χ2 table (P = 5%). 

The results of the frequency test, at the chance of rejection of 5%, the value of χ2 of the 

observation results is smaller than χ2
table, so the hypothesis that random data is rejected. Whereas 

in the probability of rejection χ2
table  of hypotheses are accepted because χ2

obs are greater than 

χ2
table. 
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Figure 2. Plot χ2 and χ2
tabel for n = 500                         Figure. 3. Plot χ2 and χ2

tabel for n = 1000 

The results of the back and forth test, on the chance of rejection of 5%, the value of χ2
 of the 

observation  is smaller than χ2
table , then the hypothesis that random data at the chance of 

rejection is 5% is accepted. Whereas at the opportunity of rejecting 95% the hypothesis that 

random data is accepted is not significant. 

For the number of random numbers N = 1000, the results of observations in the three statistical 

tests are as follows: 

Frequency test shows that at the 5% probability of rejection, the hypothesis is rejected; while the 

odds of rejection are 95% accepted. Then it can be concluded that the hypothesis that the data 

distribution is random is rejected. From the table it can be seen that in each interval class, the 

data is not evenly distributed, with a standard deviation of 7.87. The gap test shows that χ2obs  

are between χ2table (P = 95%) and χ2table (P = 5%). Similarly, the back and forth test shows that 

χ2obs  are between χ2table (P = 95%) and χ2table (P = 5%). 

The hypothesis estimates for a 5% probability, the hypothesis is rejected, while at 95% 

probability, the hypothesis that the pseudorandom data is randomly distributed, can be accepted 

significantly. Results that can accept hypotheses at intervals, probabilities, and retention 

between 5% and 95% and pattern gaps even though for frequency distribution, with standard 

deviation 8, the hypothesis cannot be accepted significantly at 95% or a 5% chance. 

Statistical tests for the number of random numbers N = 7500, the statistical test hypothesis for 

the estimate of 5%, the hypothesis that random data is rejected, while at the 95% chance of 

debate, the hypothesis that random data can be accepted significantly. As for the larger amount 

of data, namely N = 10,000, the statistical test hypothesis for debate is 5%, the hypothesis about 

random data is rejected, while at the 95% chance of debate, the hypothesis that random data can 

be accepted significantly. For large numbers 5000, 7500 and 10000, it turns out that the 

frequency test indicates a profit of 5%, the hypothesis of random data is rejected, while at a 

profit of 95%, the hypothesis that random data can be accepted significantly. Data distribution 

frequency of occurrence of data is not a random distribution uniform distribution. This uniform 

distribution of pseudorandom data is then used to create Poisson distribution pseudorandom 

numbers 
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The next statistical test is carried out to test whether the sequence of numbers is Poisson 

distribution. The probability distribution of inter-arrival times and the probability distribution of 

service time in the queuing system (M / M / 1) used are: 

Table 2. Inter-Arrival Time Probability Distribution 

 

Probability 
Upper 

limit 

Lower 

Limit 

Inter arrival 

time 

(minutes) 

 0.4 0 0.4 1 

0.3 0.4 0.7 3 

0.1 0.7 0.8 5 

0.2 0.8 1 10 

 

Table 3. Probability Distribution of the Service Time 

 

 

 

 

The inter-arrival time and service time is Poisson distribution pseudorandom data. The number 

of customers that come is n = 15. The results of the 1 simulation are as follows: 

Table 4. Simulation of queueing system (M/M/1) with n = 15 

Cust 

Inter arrival 

time  

(minutes) 

Service Time  

(minutes) 

Waiting Time  

(minutes) 

Total 

Time 

1 1 3 - 3 

2 1 6 2 8 

3 3 6 5 11 

4 5 6 6 12 

5 5 6 7 13 

6 1 6 12 18 

7 10 9 8 17 

8 3 9 14 23 

9 1 3 22 25 

10 5 3 20 23 

11 3 3 20 23 

12 10 3 13 16 

13 1 6 15 21 

14 1 9 20 29 

15 3 6 26 32 

 

 

  

Probability 

  

Lower 

Limit 

  

Upper 

Limit 

  

Service 

Time 

(min) 

0.3 0 0.3 3 

0.35 0.3 0.65 6 

0.35 0.65 1 9 
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Figure. 3. The graph between inter-arrival time and service time 

 

 

 

 

 

 

 

 

 

Figure. 4. The graph between waiting time and service time 

The performance expectation of the queue system above is 0.76. We also perform the simulation 

with a larger amount of data: 100, 500, 1000, 7500, and 10.000 customers. The statistical test of 

pseudorandom data with Poisson distribution for the amount of data = 100 indicates that Dhit (D 

calculated) is greater than D (1-α, n)  or  Dhit > D (1-α, n). Thus the hypothesis that the pseudorandom 

data with Poisson distribution is rejected. On the contrary, the difference in distance between 

Dhit > D (1-α, n). is not significant. 

 

 

 

 

 

 

Figure. 5. The plot of Poisson distribution tests (M/M/1) n=100 
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The same thing happened in the simulation with the number of pseudorandom data n = 500. 

However in the simulation with the number of pseudorandom data n = 1000, the hypothesis of 

Poisson distribution data was received, and the distance between Dhit and D (1-α, n) was quite 

significant. 

N = 500, the same thing happened in the simulation of pseudorandom data. N = 1000, the 

hypothesis of data is Poisson distribution was not rejected, and the distance between Dhit and 

D(1-α, n)  was quite significant. 

 

 

 

 

 

 

Figure. 6. Plot of Poisson distribution tests (M/M/1) n=1000 

Next, the simulation with a number of 'run' varies, namely s = 100, 500, 1000, and 5000. The 

number of pseudorandom data is n = 100. Performance expectations are obtained from the 

transient phase or steady state conditions from the performance graph as shown below. 

 

 

 

 

 

 

Figure. 7. The graph of system performance (s =100) 

 

For 100 run of simulation (s=100), transient phase started at the 70th to the 93rd run, with the 

performance expectation is around 0.83.  The result of the performance expectation and Poisson 

distribution tests on each number of run can be seen at table 5, 6, and 7.  
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Table 5. Performance Expectation (n=100) 

 

 

 

 

 

 

Table 6. Performance expectation (n=500) 

The number of 

run 

s 

Performance 

Expectation  

Tests of 

Poisson 

distribution 

Dcal D(1-α,n) 

100 0.95 0.0077 0.0079 

500 0.76 0.0029 0.0031 

1000 0.99 0.0065 0.0064 

5000 0.63 0.0034 0.0037 

7500 0.88 0.0040 0.0041 

10000 0.78 0.0105 0.0100 

 

Table 7. Performance expectation (n=1000) 

The number of 

run 

s 

Performance 

Expectation  

Tests of 

Poisson 

distribution 

Dcal D(1-α,n) 

100 0.97 0.0081 0.0083 

500 0.81 0.0024 0.0025 

1000 0.99 0.0059 0.0060 

5000 0.87 0.0033 0.0035 

7500 0.98 0.0049 0.0049 

10000 0.67 0.0121 0.0106 

 

Performance comparisons based on the number of pseudorandom data and the number of 

pseudorandom data : 

The number 

of run 

s 

Performance 

Expectation  

Tests of Poisson 

distribution 

Dcal D(1-α,n) 

100 0.83 0.0078 0.0084 

500 0.66 0.0029 0.0035 

1000 0.74 0.0040 0.0049 

5000 0.82 0.0087 0.0096 

7500 0.88 0.0040 0.0044 

10000 0.84 0.0082 0.0088 
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Figure 8.  The performance comparison based on the number of run. 

In our program, we construct random numbers using a pseudorandom generators with Poisson 

distribution. Subprogram to build random number variations with uniform distribution of 0 < ui 

< 1  based on the power residue method. With the power residue method, a repetition program 

occurs in each period of rows of random numbers generated. This is one of the causes of the 

randomness of the data hypothesis in the chance of rejection which is quite small, ie 5% is 

rejected for the amount of data that is getting bigger. 

Likewise, the opportunity for data rejection is quite large, ie 95% of the randomness hypothesis 

of the data is received. On the number of data n = 1000, the value of system performance for the 

number of run s = 500 and the number of run s = 1000 is close to 1. But in the larger amount of 

data, namely 5000, 7500, and 10000, the performance value is below 0.9. Even in the amount of 

data = 5000, the average value of performance is below 0.8. This shows that the greater the 

random data generated, the greater the chance that the chance of randomization of the data 

produced will be smaller and more insignificant. The level of randomness of this data proved to 

have an effect on the simulation results on the M / M / 1 queue problem. 

The simulation results show that the randomness level of the data hypothesis can be accepted as 

a random number at the rejection level of 5% or at the rejection level of 10%. While the Poisson 

distribution test shows that the more data, the greater the possibility of data not being Poisson 

distribution. 

Based on our observation, we conclude that there are two possibilities that cause this. The first 

one  is that in a period of random number sequences, the data experience repetition, and the 

repetition that occurs does not fully repeat the total of each random sequence.. The pattern of 

data distribution generated by random number generator application programs depends on the 

method used to generate random numbers. Repetition of rows of data for a certain period is a 

result of the method of generating random numbers used in the application program. In the 

Fortran application program, subprograms to produce random number variations have a uniform 

distribution of 0 < ui < 1  based on the deterministic power residue method so that a repetition 
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period will occur in a data line. The second possibility is that the simple queuing system (M / M 

/ 1) does not require large pseudorandom data because one server in a period of time is only 

capable of serving a limited number of customers.  A Large pseudorandom data does not 

comply with the test case that uses a single channel service.  

5. Conclusions 

In using pseudorandom random numbers, it is necessary to consider software applications and 

methods used as generators of pseudorandom numbers. This is needed to determine the length 

of the repetition period of the data. The application program used to generate random numbers 

affects the randomness of the sequence of pseudorandom random numbers generated, which 

will also have an impact on the simulation results to measure the performance of a system. 

 

In conducting a simulation experiment with pseudorandom numbers, it is necessary to consider 

the number of pseudorandom numbers needed, and the application software used to generate 

pseudorandom numbers. In the queue system (M / M / 1), for the small number of customer 

arrivals, the level of randomness does not have a significant effect on system performance, as 

well as a large amount of pseudorandom data. This is likely related to the type of queue system 

being reviewed. To measure the performance of a simple queue system (M / M / 1) the amount 

of pseudorandom data used does not need to be very large. On the other hand for multi-server 

queuing systems, large numbers of pseudorandom numbers are needed. Further research can be 

done to test randomness and its effect on other queuing systems  
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