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Abstract. Backpropagation Neural Network has weaknesses such as errors of gradient 

descent training slowly of error function, training time is too long and is easy to fall into local 

optimum. Backpropagation algorithm is one of the artificial neural network training 

algorithm that has weaknesses such as the convergence of long, over-fitting and easy to get 

stuck in local optima. Backpropagation is used to minimize errors in each iteration. This 

paper investigates and evaluates the performance of Adaptive Moment Estimation (ADAM) 

to minimize the squared error in backpropagation gradient descent algorithm. Adaptive 

Estimation moment can speed up the training and achieve the level of acceleration to get 

linear. ADAM can adapt to changes in the system, and can optimize many parameters with a 

low calculation. The results of the study indicate that the performance of adaptive moment 

estimation can minimize the squared error in the output of neural networks. 
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1.  Introduction 

ADAM is the Moment Adaptive Estimation, which is one method for optimizing parameters. In 

the study [1] using the algorithm ADAM compensated Asynchronous Delay (DC - Adam) to train 

Deep Neural Network (DNN). DC - ADAM can get a more accurate gradients and faster in 

training progress, and easy to implement with minimal memory requirements. This research [2] 

on online learning algorithm by using Group Method Of Data Handling Based Proportional - 

Integral - Derivative (GMDH - PID) for non-linear systems. With online setting method using 

GMDH - PID using Adaptive Estimation Moments (ADAM), which is one method of 
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optimization that can adapt to changes in the system and also can optimize many parameters with 

a low calculation. 

A study about the Levenberg Marquardt - Backpropagation (LM - BP) Based Operation Quality 

Assessment Method For OTN (Optical Transmission Network) in the Smart Grid used in the 

smart grid to improve transmission speed and capacity efficient network transmission. 

Backpropagation Neural Network has weaknesses such as errors from gradient descent training 

on slowly of error function, training time is too long and is easy to fall into local optimum. While, 

LM algorithm convergence speed and robustness of the best on the network that are robustness 

resistant. The results of this study with the backpropagation algorithm Levenberg Marquardt (LM) 

have more optima prediction accuracy, have a better network structure and accuracy errors 

increased significantly from the standard back propagation neural network [3]. 

Artificial Neural Network (ANN) has a problem in determining the weight to the right network. 

A study comparing the Gradient Descent and Genetic Algorithm (GA) based training Artificial 

Neural Network (ANN). GA slightly better in Mean Square Error (MSE) in cancer datasets for 

classification errors are average, but better Gradient Descent in the dataset diabetes. From this 

study, it is still necessary to experiment with more datasets in ANN training [4]. 

In the study to improve the gradient descent in artificial neural network such as quickprop, 

backpropagation, Delta-Bar-Delta and Super SAB as the approximate error of function with 

quadratic polynomial to get the minimum squared error function. The partial derivative method 

until the process of update weights in the gradient descent on backpropagation can be modified 

to the level of learning at each weight to the neurons in the network. Improved gradient descent 

is better than standard gradient descent and gradient descent momentum [5]. 

In the study to evaluate and test the three gradient descent based on backpropagation to classify 

benign and malignant tumors in ultrasound imaging. In selecting the right learning rate, time 

complexity and network model are still important in the network system at the time of 

convergence in the classification process. Gradient descent (GD), the gradient descent with 

momentum (GDM) and adaptive gradient descent (AGD) is used for training the classification 

model for testing and validation. The results of this study, backpropagation based AGD is better 

in the process of classifying benign and malignant tumors, but AGD algorithms are very long in 

time complexity [6]. 

In the study of artificial neural networks, mean square error (MSE) is a problem that is used in 

learning. The training uses a theoretical backpropagation method, for correntropy conjugate 

gradient-based BP (CCG-BP). CCG - BP gets better results than MSP-based correntropy-based 

backpropagation and can minimize MSE [7]. A study of [8] to improve the convergence and 

global search capabilities of the network backpropagation (BP). BP has weaknesses such as long 
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convergence, over-fitting and easily trapped to local optima. Genetic Algorithm (GA) can 

improve BP by evaluating natural selection, genetic crossover and mutation gen that have 

advantages such as very high parallels, stochastic and global probability searches that can 

overcome BP shortcomings. The result is that GA can set specific targets in starting BP weight, 

adjusting BP training so that the epoch is smaller. 

In the study using Backropagation Modified Adaptive Approach (AMBP) in improving the 

performance of the Modern Artificial Intelligence algorithm to accelerate convergence by 

adjusting the learning rate at each layer and epoch. AMBP algorithm with a learning rate variable 

for the process of classifying data quickly and getting a small MSE in a short time. To improved 

the learning rate with momentum can be added to the network, this algorithm can be known as 

the backpropagation with momentum algorithm (BPM). The results of previous studies, AMBP 

are much better and able to provide MSE that is less than SBP and BPM [9]. 

Artificial Neural Networks (ANN) using levenberg - marquardt training to optimize weights on 

ANN. Statistical methods and ANN are methods used to predict. However, ANN does not make 

the basic structure of the system compared to the statistical method. ANN is also a linear 

regression that is complex, nonlinear and dynamic. The levenberg - marquardt algorithm is close 

to the speed of training, so that the performance function will always be reduced at each algorithm 

iteration. The Levenberg - Marquardt algorithm is the fastest method for training artificial neural 

networks to several hundred weights. The result is that the Levenberg-Marquardt algorithm has 

errors that are relatively less than 3% Mammadli [10]. 

In the study of Optimizing the Backpropagation by using the Nguyen – Windrow method on the 

input layer of the feed – forward process and adjusting the learning rate parameter in the backward 

process. The influence of learning with adaptive learning rate changes using a randomly selected 

initial weight with the Nguyen – Windrow method. Backpropagation is used to minimize error in 

every iteration. The result in the feed – forward phase with Nguyen – Windrow's initial weight 

method was able to give close value to the error value affecting the weight update to the backward 

phase. In the results of the backward phase adaptive learning rate parameters can be pain number 

of iterations (epoch) [11]. 

In this paper, the learning process of the backpropagation algorithm is still slow in training 

gradient descent from error functions and requires a very long processing time. This is because 

the architecture, learning rate, overfitting and the number of epochs in the training are still high 

so that the solution is easy to fall into the optimum local. Gradient descent backpropagation is 

also still not good at minimizing squared errors, so a suitable approach is needed in order to 

improve the gradient descent backpropagation learning process. The performance of Adaptive 

Estimation moment to minimize the squared error in backpropagation gradient descent algorithm. 
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ADAM can update the parameters of the output torque which is a torque distribution first and 

second moments in backpropagation gradient descent. The purpose of this study is to minimize 

the squared error at each iteration (epoch) at the output of the neural network. The results showed 

that ADAM can minimize the squared error at each iteration (epoch) at the output of neural 

networks. 

2. Adaptive Moment Estimation And Gradient Descent Backpropagation Algorithms 

2.1 Adaptive Moment Estimation 

ADAM is used for optimizing a gradient descent learning algorithm to minimize the objective 

function (often called the loss function E (x)) on various parameters such as weights and biases. 

Error in backpropagation is the mechanism used to modify network parameters before 

initialization parameters to get optimized and can produce output is approaching the target output. 

In the error back propagation neural network used, the process of calculating the feedforward 

output one by one and calculate the error component obtained in the last layer. Gradient is 

calculated on backpropagation to get the network to be optimized.Here are the steps - steps 

ADAM as follows [12]: 

 Initialization mweight (t), mbias (t), vweight (t) and vbias (t) = 0 

 If the first iteration is t = 1, t = 1-1 = 0 (time step / early iterations on the input) 

 Gradient calculation for estimating the first moment in time step = 𝑔𝑡
 𝐸

 𝑊𝑖𝑘
𝑜  

 The calculation of the estimated first moment (mt) weight and bias can be done after receiving 

the derivative calculation squared error in the output layer by the following equation:  

𝑚𝑤𝑒𝑖𝑔ℎ𝑡(𝑡) =  𝛽1 ∗ 𝑚𝑤𝑒𝑖𝑔ℎ𝑡 (𝑡−1) + (1 − 𝛽1) ∗ 𝑔𝑡 (1) 

mbias(t)     =  β1 ∗ mbias (t−1) + (1 − β1) ∗ gt  

 The calculation of weight and bias correction estimation of the first moment ḿ𝑡 by the 

following equation: 

ḿ𝑤𝑒𝑖𝑔ℎ𝑡(𝑡) =
𝑚𝑤𝑒𝑖𝑔ℎ𝑡(𝑡)

1 − 𝛽1
𝑡    (2) 

ḿ𝑏𝑖𝑎𝑠(𝑡) =
𝑚𝑏𝑖𝑎𝑠(𝑡)

1 − 𝛽1
𝑡     

 Gradient calculation for estimating the first moment in time step = 𝑔𝑡
 𝐸

 𝑊𝑖𝑗
ℎ 

 

 

 The calculation of the estimated second moment (vt) weight and bias can be done after 

receiving the derivative calculation output to the hidden layer by the following equation: 

𝑣𝑤𝑒𝑖𝑔ℎ𝑡(𝑡) =  𝛽2𝑣𝑤𝑒𝑖𝑔ℎ𝑡(𝑡−1) + (1 − 𝛽2) ∗ (𝑔𝑡)2 (3) 

𝑣𝑏𝑖𝑎𝑠(𝑡) =  𝛽2𝑣𝑏𝑖𝑎𝑠(𝑡−1) + (1 − 𝛽2) ∗ (𝑔𝑡)2  
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 The calculation of weight and bias correction the estimated second moment Ṽ𝑡 by the following 

equation: 

Ṽ𝑤𝑒𝑖𝑔ℎ𝑡(𝑡) =
𝑣𝑤𝑒𝑖𝑔ℎ𝑡(𝑡)

1 − 𝛽2
𝑡    (4) 

Ṽ𝑏𝑖𝑎𝑠(𝑡) =
𝑣𝑏𝑖𝑎𝑠(𝑡)

1 − 𝛽2
𝑡     

 Parameter updates weight and bias by the following equation: 

𝑤𝑤𝑒𝑖𝑔ℎ𝑡(𝑡) = 𝑤𝑤𝑒𝑖𝑔ℎ𝑡(𝑡−1) −  ∗
ḿ𝑤𝑒𝑖𝑔ℎ𝑡(𝑡)

√Ṽ𝑤𝑒𝑖𝑔ℎ𝑡(𝑡) +  

   
(5) 

𝑤𝑏𝑖𝑎𝑠(𝑡) = 𝑤𝑏𝑖𝑎𝑠(𝑡−1) −  ∗
ḿ𝑏𝑖𝑎𝑠(𝑡)

√Ṽ𝑏𝑖𝑎𝑠(𝑡) +  

    
 

2.2 Gradient Descent Backpropagation 

Backpropagation gradient descent algorithm to minimize Square Error (SE) for the multilayer 

feedforward neural network. The learning rule to change the weights and bias on the output 

neuron layer and hidden layer neurons The following steps - steps in the gradient descent 

backpropagation ADAM [13]: 

 Initialize the weights randomly on each neuron located in the input layer, hidden layer and 

output layer. 

 Phase feed forward propagation: 

1. Calculate each neuron in the hidden layer to the equation: 

𝑛𝑒𝑡𝑖𝑗
ℎ  = ∑ 𝑋𝑖𝑊𝑖𝑗

ℎ

𝑖=1

+ 𝑤 𝑏𝑖𝑎𝑠_ 𝑗
ℎ  (6) 

2. Calculate each neuron's activation function in the hidden layer with sigmoid equation: 

𝑓𝑖𝑛𝑛𝑒𝑡𝑛 = 1

1 + 𝑒−(𝑛𝑒𝑡𝑖𝑗
ℎ )

 
(7) 

3. Calculates the total value of the output layer to the equation:  

𝑛𝑒𝑡𝑖𝑘
𝑂  =  

∑(𝑓 𝑖𝑛_𝑛𝑒𝑡 𝑛 ∗ 𝑤𝑖𝑘
𝑂

𝑛

𝑖=1

) + 𝑤 𝑏𝑖𝑎𝑠 _ 𝑘
𝑂  

(8) 

4. Calculates the sigmoid activation function in the output layer to the equation: 

𝑓𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛= 1

1 + 𝑒−(𝑛𝑒𝑡𝑖𝑘
𝑂 )

 
(9) 

 

5. Calculates the error in the output layer based on the difference between the target and output 

by the equation: 

eoutput= Target − 𝑓𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛 (10) 

6. Calculates the square error at the output layer to the equation: 
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Square Error = 1

2
∗ ∑(Target

k

− 𝑓𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛)2 

(11) 

7. Calculates the partial derivative of the weight and bias for each neuron in the output layer 

with the equation: 

 𝐸

 𝑊𝑖𝑘
𝑜 = 

−(Target − 𝑓𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛) ∗ 𝑓 ′𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛

∗  𝑓𝑖𝑛𝑛𝑒𝑡𝑛 

(12) 

 𝐸

  𝑊 𝑏𝑖𝑎𝑠
𝑂 = −(Target − 𝑓𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛) ∗ 𝑓 ′𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛  

8. Calculates the partial derivative of the weight and the bias for each neuron in the hidden 

layer with the equation: 

 𝐸

 𝑊𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑗
ℎ

= − ∑(T − 𝑓𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛) ∗ 𝑓 ′𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛 ∗ 𝑤𝑖𝑘
𝑂

𝐤

∗ 𝑓′𝑖𝑛𝑛𝑒𝑡𝑛 ∗ Xi 
(13) 

 𝐸

  𝑊𝑏𝑖𝑎𝑠 𝑖
ℎ

= − ∑(T − 𝑓𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛) ∗ 𝑓 ′𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛 ∗  𝑤𝑖𝑘
𝑂 ∗ 𝑓′𝑖𝑛𝑛𝑒𝑡𝑛

𝐤

  

 

3. Methodology 

The methodology is divided into two parts on the backpropagation network architecture, that is, 

giving a feed forward for weighting and part of the backward feed for error values. Starting from 

output, so that each neuron has a corresponding error value that roughly represents its contribution 

to the original output. The steps to make a research design are as follows: 

 Prepare data as enter 699 data which has 9 variables and 1 target variable for class. 

 The pattern of designing network architecture is the number of neurons in the input layer, the 

number of neurons in the hidden layer and the number of neurons in the output layer. 

 Run backpropagation with adaptive moment estimation with random initial weights. 

 Analysis. 

3.1 Data Input 

The data used in this research is data about Wisconsin Breast Cancer dataset from the University 

of California Irvine (UCI) Machine Learning Repository. Data has 9 attributes were rated visually 

with the appropriate class variables and defined for each record in the dataset. All values on 9 

attributes are indexed from 1 - 10 interval ranges, while the range class value on breast cancer 

cells is 2 for the benign category and 4 for the malignant category. The following Table 1 

descriptions of datasets WBCD: 

 

 

 



Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 33 

Table 1. Descriptions of datasets WBCD 

Attribute Range interval 

Clump Thickness 1-10 

Uniformity of Cell Size 1-10 

Uniformity of Cell Shape 1-10 

marginal Adhesion 1-10 

Single Epithelial Cell Size 1-10 

Bare Nuclei 1-10 

Bland Chromatin 1-10 

normal Neucleoli 1-10 

Mitoses 1-10 

Class variable Benign cells (2) and malignant cells (4) 

3.2 Block Diagram 

The following figure 1 is a block diagram which aims to research done in the process is not out 

of the specified path. Block diagram shown in Figure 1. 

Data 

Pre – Processing :

 Cleaning Data

 Sorting Data

 Normalisasi Data
Backpropagation 

Neural Network

 

Calculation of the 

feed forward 

propagation

Calculation of the ADAM for 

optimization of gradient descent 

backpropagation

Calculation of the 

derivative partial square 

error for Gradient descent

Results for 

update weight 

and bias

Calculation of the 

square error

 

Figure 1. Block diagram 

Figure 1 can be explained that the block diagram above is the backpropagation neural network 

architecture with multiple processes, namely: 

 The data used is the data derived from Wisconsin Breast Cancer dataset from the University 

of California Irvine (UCI) Machine Learning Repository. 

 Pre-processing stage has three processes, namely: 

1. Data Cleaning: used to fill in missing data values in as many as 16 data on the bare nuclei 

variable using the equation Paulin & Santhakumaran median method [14]: 

MEDIAN = size of  
(𝑁+1)

2
 (14) 
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2. Sorting the data: is used to separate the data according to the class that is benign and 

malignant. 

3. Normalization of data: aims to change the value on the data value range 1-10 into a value 

range of 0-1 by using the following equation [15]: 

𝑋𝑖
′ = Xi − Xmin

Xmax − Xmin

 
(15) 

3.3 Backpropagation Neural Networks Architecture 

The data used for the research is binary value after cleaning data, the dataset is 699 data and has 

9 variables and 1 target variable for the class. After the dataset is carried out in the pre-processing 

stage, the data is then used as a dataset during testing to the input layer of the network that will 

be calculated for each neuron in the hidden layer and output layer. The results (output) of the error 

crater will be used as test data to see the minimization of the squared error. To test dataset, the 

following figure 2. Backpropagation neural network architecture: 
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Figure 2. Backpropagation neural network architecture 

Figure 2 is a back propagation neural network design. Input on this draft architecture adapted to 

the feature dataset from the UCI Machine Learning is 9 neurons in the input layer. In the hidden 

layer based on the calculation that has been calculated and determined, then the neurons in the 
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hidden layer of 6 neurons. And to output according to the data layer, called the output layer as 

many as 1 neurons. 

3.4 ADAM Architecture Design In Gradient Descent Backpropagation 

The image used is 24-bit color image. The calculation of MSE and PSNR aims to determine how 

much the image changes after message insertion. There is 1-bit storage up to 4-bit LSB to be 

performed, each stego-image will be calculated MSE and PSNR values to determine which image 

is better or how many better bits to store information or messages. The following is the formula 

used to calculate MSE and PSNR. Using (2.2) & (2.3) 

Here is a figure 3 is the architecture of ADAM on a gradient descent backpropagation which aim 

to test dataset: 

Input
Calculation of the

Hidden Layer

Calculation of the

Output Layer

Calculation of 

the Square Error

Actual Output
Output produced

W hidden W output Error (E)

Calculation of the 

Derivative Partial Error 

in Output Layer

Calculation of the 

First Adaptive 

Moment Estimation

dW output

Calculation of the 

Second Adaptive 

Moment Estimation 

dW hidden

Update 

Weight

FEED FORWARD - PROPAGATION

          FEED BACK - PROPAGATION

Calculation of the 

Derivative Partial Error 

in Hidden Layer

dEdZ

Z

Figure 3. ADAM architecture on gradient descent backpropagation 

Figure 3 is an architecture design of ADAM on a gradient descent backpropagation. In the feed 

forward propagation process, the input data that will be calculated on a hidden layer and output 

layer computations on. In the calculation results will be summed output layer to the actual value 

output (target value) in the data, after the reduction process will be conducted gradient descent to 

minimize the squared error propagation. In the propagation process takes partial derivative 

calculation process of error in the weight and bias in the output layer. ADAM The first will be 

done after getting the calculation of partial derivatives of the error in the output layer of weights 

and biases. After getting the results of the partial derivative calculation on the weights and biases, 

calculation to estimate the first moment and the moment that the first results will be corrected to 

gain weight and bias in the output layer. ADAM second will be carried out after obtaining the 

partial derivative calculation of error in hidden layer of weights and biases. After getting the 

results of the partial derivative calculation on the weights and biases, carried out calculations to 
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estimate the second moment and the second moment results will be corrected to get the weights 

and biases at the hidden layer, so that updates the weights and update the bias obtained. 

4. Result and Discussion 

The main objective of this research is to focus on the minimization of the squared error in the feed 

forward propagation. Initial weights randomly in feed forward propagation and update weighs in 

at feedbackward propagation process. The process of the feed forward propagation on network 

performance and update of the buffer weight is affected by the provision of learning rate 

parameter value on network performance can be seen in Table 2. 

Table 2. Parameter Value for adaptive estimation moment in gradient descent backpropagation 

Parameter information 

Number Of Hidden Neurons 6 

Activation Function Binary sigmoid 

maximum Epoch 5 

minimum Error 0:01 

Learning Rate 0001 

Initialization bias and weight 

to network 

Random 

Architecture Multilayer Network: 

Input: 9 Neuron 

Hidden Layer: 6 neurons 

Output: 1 neuron (second class) 

Optimization In 

Backpropagation 

Adaptive Moment Estimation 

 : 0.00000001 (10 ^ - 8) 

The value of the Exponential for estimation of the first 

moment (β1): 0.9 

The value of the Exponential for the estimation of the 

second moment (β2): 0999 

The data consists of 699 data, the number of variables in the input layer 9 and 1 variable to the 

target (have 2 classes). Later in the input data before, performed a pre proccesing to get the value 

range of 0 - 1. The result of the implementation of this program is to minimization of the squared 

error and the performance of the gradient descent back propagation neural network using ADAM, 

so I know how the system back propagation neural network to recognize a given pattern. Tests 

carried out with 5 testing, first on epoch 1, until the fifth test of the epoch 5. In the first test in 

epoch 1 consists of 699 iteration process, so that by the fifth test at the epoch 5 has the overall 

iterative process as much as 3494 iterations. 
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4.1 The First Test On EPOCH 1 

The results of ADAM testing on gradient descent backpropagation for the first test on EPOCH 1 

can be seen in Figure 4: 

 

Figure 4. The squared error value in the output layer at epoch 1 starts from iteration 1 to 

iteration 699 

In the results, it can be seen in each iteration of the first test on epoch 1 from iteration 1 to iteration 

466 getting an increase from the result of the squared error which is 0.2183443914320067 up to 

0.2900015104017409. In the iteration of 467 until iteration 586 gets a decrease from the square 

of the error which is valued at 0.28928014850209544 it decreases to 0.20971254074474288. In 

the 587 iteration up to 699 iterations occurred an increase from the results of the error squared 

value which was 0.2104010408243566 up to 0.324379559070086. So that the first test on epoch 

1 in each iteration starting from iteration 1 to iteration 699 does not get a decrease / minimization 
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of the squared error. Here is a Fig. 5 which is a graph to see the results of the first test on Epoch 

1: 

 

Figure 5. Graph of the first test at epoch 1 

4.2 The Second Test On EPOCH 2 

The results of ADAM testing on gradient descent backpropagation for the second test on EPOCH 

2 can be seen in Figure 6: 

 

Figure 6. The squared error value in the output layer at epoch 2 starts from 700 iterations up to 

iterations 1399 
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In the results, it can be seen in the second test on epoch 2 in each iteration of 700 iterations up to 

iteration 1399 indicating a decrease / minimization of the squared error value of 700 iterations to 

863 iterations which are 0.32498026050398193 decreased to 0.1899676752888724. In the 

iteration process 864 up to iteration 1167 get an increase from the results of the error squared 

value which is worth 0.1901636290061076 up to 0.25079291962345257. In the iteration process 

1168 up to 1284 iterations get a decrease / minimization of the squared error which is 

0.24978478229861384 decreases to 0.1794268266766979. In the iteration process 1285 up to 

iteration 1399 get an increase from the result of the squared error which is 0.18006584703194672 

rising to 0.2807332818651873. So that the second test on epoch 2 in each iteration for the entire 

iteration of 700 to iteration 1399 gets a decrease / minimization of the squared error. Following 

figure 7 is a graph to see the results of the second test on Epoch 2: 

 

Figure 7. Graph of the second test at Epoch 2 

4.3 The Third Test On EPOCH 3 

The results of ADAM testing on gradient descent backpropagation for the third test on epoch 3 

can be seen in Figure 8: 
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Figure 8. The squared error value in the output layer at epoch 3 starts from iterations 1400 to 

iterations 2099 

In the results, it can be seen in the third test on epoch 3 in each iteration from iteration 1400 to 

iteration 2099 getting a decrease / minimization of the squared error value of iterations 1400 to 

iteration 1545 which value 0.28091864926453175 decreases to 0.15492875987278124. In the 

iteration of 1546 until iteration 1858 obtained an increase from the result of the squared error 

value of 0.1550510538374394, rising to 0.22583708318335152. In the iteration 1859 to the 1980 

iteration, the decrease / minimization of the error error value of 0.22549797498133206 decreased 

to 0.14033876589092475. In the 1981 iteration up to 2099 iterations get an increase from the 

results of the error squared value which is 0.14072494335883678 up to 0.2205961135239007. So 

that the third test on epoch 3 in each iteration for the whole of iterations 1400 to iteration 2099 

gets a decrease / minimization of the squared error. Following figure 9 is a graph to see the results 

of the third test on Epoch 3: 
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Figure 9. Graph of the third test at Epoch 3 

4.4 The Fourth Test On EPOCH 4 

The results of ADAM testing on gradient descent backpropagation for the fourth test on epoch 4 

can be seen in Figure 10: 

 

Figure 10. The squared error value in the output layer at epoch 4 starts from the iteration 2100 

to iteration 2799 
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In the results, it can be seen in the fourth test on epoch 4 in each iteration from iteration 2100 until 

iteration 2799 gets a decrease / minimization of the square of error at the iteration of 2100 to 

iteration 2244 which is 0.22048338304646564 decreasing to 0.12194312699269359. At iteration 

2245 until iteration 2566 gets an increase from the result of the squared error value of 

0.12206380052970295 up to 0.1809430190725432. In the iteration 2567 up to iteration 2693, the 

decrease / minimization of error squares which is 0.17975220908210351 decreases to 

0.10985521531074001. At iteration 2694 until iteration 2799 gets an increase from the result of 

the squared error value which is 0.11016314136315486 up to 0.16105322504274178. So that the 

fourth test on Epoch 4 in each iteration for the whole of the iteration 2100 until iteration 2799 

gets a decrease / minimization of the squared error. Following figure 11 is a graph to see the 

results of the fourth test on Epoch 4: 

 

Figure 11. Graph of the fourth test at Epoch 4 

4.5 The Fifth Test On EPOCH 4 

The results of ADAM testing on gradient descent backpropagation for the fifth test in Epoch 5 

can be seen in Figure 12: 
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Figure 12. The squared error value in the output layer at epoch 5 starts from the iteration 2800 

to iteration 3494 

In the results, it can be seen in the fifth test on epoch 5 in each iteration from iteration 2800 until 

iteration 3494 gets a decrease / minimization of the squared error value at iterations 2800 to 

iteration 2934 which is 0.16072535211362018 decreases to 0.0919597446264125. In the iteration 

2935 until iteration 3257 get an increase from the results of the squared error value which is 

0.09200385351776505 up to 0.14711608054493538. In the iteration 3258 up to iteration 3378, 

the decline / minimization of the value of the results of the squared error of 0.14666476656742403 

decreased to 0.07891650158907507. In the 3379 iteration up to iteration 3494 get an increase 

from the results of the squared error value which is 0.07901542630350233 up to 

0.1118082817986742. So that the fifth test on Epoch 5 in each iteration for the overall iteration 
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of 2800 until iteration 3494 gets a decrease / minimization of the squared error. Following figure 

13 is a graph to see the results of the fifth test on Epoch 5: 

 

Figure 13. Graph of the fifth test at Epoch 5 

From the graph of the first test on Epoch 1 to the fifth test on Epoch 5, can be seen in Figure 

Graph 14 which is the whole test above. The first test on EPO 1 to Fifth Test on EPO can be seen 

in Figure 14: 

 

Figure 14. The first test chart until the fifth test in epoch 1 through epoch 5 

5. Conclusion 

The first test on Epoch 1 is an increase in the value of the squared error. In the second test on 

Epoch 2 to the fifth test at Epoch 5 there is minimization / decrease of squared error in each epoch 

test. The results of tests that have been conducted on neural network networks namely ADAM on 

gradient descent backpropagation can help the learning performance of neural network networks 

on gradient descent backpropagation to minimize / decrease squared errors. Furthermore, a new 

method analysis can be carried out for the learning level, so that it is expected that from the first 
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test on Epoch 1 to the fifth test at Epoch 5 it results in a decrease in the minimization of the 

squared error. 
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