
Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 | 27 46

DATA SCIENCE
Journal of Computing and Applied Informatics

*Corresponding author at:Department of Information Technology, Faculty of Computer Science and Information

Technology, Universitas Sumatera Utara, Medan, Indonesia

E-mail address: ernabrn@usu.ac.id

Copyright © 2020 Published by Talenta Publisher
ISSN: 2580-6769 | e-ISSN: 2580-829X | DOI : 10.32734/jocai.v4.i1-1160
Journal Homepage: https://jocai.usu.ac.id

Adaptive Moment Estimation To Minimize Square

Error In Backpropagation Algorithm

R N Singarimbun1, E B Nababan2*, and Opim Salim Sitompul3

1Graduate School of Computer Science

2,3Department of Information Technology, Faculty of Computer Science and Information Technology,

Universitas Sumatera Utara, Medan, Indonesia

Abstract. Backpropagation Neural Network has weaknesses such as errors of gradient

descent training slowly of error function, training time is too long and is easy to fall into local

optimum. Backpropagation algorithm is one of the artificial neural network training

algorithm that has weaknesses such as the convergence of long, over-fitting and easy to get

stuck in local optima. Backpropagation is used to minimize errors in each iteration. This

paper investigates and evaluates the performance of Adaptive Moment Estimation (ADAM)

to minimize the squared error in backpropagation gradient descent algorithm. Adaptive

Estimation moment can speed up the training and achieve the level of acceleration to get

linear. ADAM can adapt to changes in the system, and can optimize many parameters with a

low calculation. The results of the study indicate that the performance of adaptive moment

estimation can minimize the squared error in the output of neural networks.

Keywords: Gradient Descent Backpropagation, Adaptive Moment Estimation, Minimize

Square Error

Received 20 September 2019 | Revised 25 December 2019 | Accepted 29 January 2020

1. Introduction

ADAM is the Moment Adaptive Estimation, which is one method for optimizing parameters. In

the study [1] using the algorithm ADAM compensated Asynchronous Delay (DC - Adam) to train

Deep Neural Network (DNN). DC - ADAM can get a more accurate gradients and faster in

training progress, and easy to implement with minimal memory requirements. This research [2]

on online learning algorithm by using Group Method Of Data Handling Based Proportional -

Integral - Derivative (GMDH - PID) for non-linear systems. With online setting method using

GMDH - PID using Adaptive Estimation Moments (ADAM), which is one method of

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 28

optimization that can adapt to changes in the system and also can optimize many parameters with

a low calculation.

A study about the Levenberg Marquardt - Backpropagation (LM - BP) Based Operation Quality

Assessment Method For OTN (Optical Transmission Network) in the Smart Grid used in the

smart grid to improve transmission speed and capacity efficient network transmission.

Backpropagation Neural Network has weaknesses such as errors from gradient descent training

on slowly of error function, training time is too long and is easy to fall into local optimum. While,

LM algorithm convergence speed and robustness of the best on the network that are robustness

resistant. The results of this study with the backpropagation algorithm Levenberg Marquardt (LM)

have more optima prediction accuracy, have a better network structure and accuracy errors

increased significantly from the standard back propagation neural network [3].

Artificial Neural Network (ANN) has a problem in determining the weight to the right network.

A study comparing the Gradient Descent and Genetic Algorithm (GA) based training Artificial

Neural Network (ANN). GA slightly better in Mean Square Error (MSE) in cancer datasets for

classification errors are average, but better Gradient Descent in the dataset diabetes. From this

study, it is still necessary to experiment with more datasets in ANN training [4].

In the study to improve the gradient descent in artificial neural network such as quickprop,

backpropagation, Delta-Bar-Delta and Super SAB as the approximate error of function with

quadratic polynomial to get the minimum squared error function. The partial derivative method

until the process of update weights in the gradient descent on backpropagation can be modified

to the level of learning at each weight to the neurons in the network. Improved gradient descent

is better than standard gradient descent and gradient descent momentum [5].

In the study to evaluate and test the three gradient descent based on backpropagation to classify

benign and malignant tumors in ultrasound imaging. In selecting the right learning rate, time

complexity and network model are still important in the network system at the time of

convergence in the classification process. Gradient descent (GD), the gradient descent with

momentum (GDM) and adaptive gradient descent (AGD) is used for training the classification

model for testing and validation. The results of this study, backpropagation based AGD is better

in the process of classifying benign and malignant tumors, but AGD algorithms are very long in

time complexity [6].

In the study of artificial neural networks, mean square error (MSE) is a problem that is used in

learning. The training uses a theoretical backpropagation method, for correntropy conjugate

gradient-based BP (CCG-BP). CCG - BP gets better results than MSP-based correntropy-based

backpropagation and can minimize MSE [7]. A study of [8] to improve the convergence and

global search capabilities of the network backpropagation (BP). BP has weaknesses such as long

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 29

convergence, over-fitting and easily trapped to local optima. Genetic Algorithm (GA) can

improve BP by evaluating natural selection, genetic crossover and mutation gen that have

advantages such as very high parallels, stochastic and global probability searches that can

overcome BP shortcomings. The result is that GA can set specific targets in starting BP weight,

adjusting BP training so that the epoch is smaller.

In the study using Backropagation Modified Adaptive Approach (AMBP) in improving the

performance of the Modern Artificial Intelligence algorithm to accelerate convergence by

adjusting the learning rate at each layer and epoch. AMBP algorithm with a learning rate variable

for the process of classifying data quickly and getting a small MSE in a short time. To improved

the learning rate with momentum can be added to the network, this algorithm can be known as

the backpropagation with momentum algorithm (BPM). The results of previous studies, AMBP

are much better and able to provide MSE that is less than SBP and BPM [9].

Artificial Neural Networks (ANN) using levenberg - marquardt training to optimize weights on

ANN. Statistical methods and ANN are methods used to predict. However, ANN does not make

the basic structure of the system compared to the statistical method. ANN is also a linear

regression that is complex, nonlinear and dynamic. The levenberg - marquardt algorithm is close

to the speed of training, so that the performance function will always be reduced at each algorithm

iteration. The Levenberg - Marquardt algorithm is the fastest method for training artificial neural

networks to several hundred weights. The result is that the Levenberg-Marquardt algorithm has

errors that are relatively less than 3% Mammadli [10].

In the study of Optimizing the Backpropagation by using the Nguyen – Windrow method on the

input layer of the feed – forward process and adjusting the learning rate parameter in the backward

process. The influence of learning with adaptive learning rate changes using a randomly selected

initial weight with the Nguyen – Windrow method. Backpropagation is used to minimize error in

every iteration. The result in the feed – forward phase with Nguyen – Windrow's initial weight

method was able to give close value to the error value affecting the weight update to the backward

phase. In the results of the backward phase adaptive learning rate parameters can be pain number

of iterations (epoch) [11].

In this paper, the learning process of the backpropagation algorithm is still slow in training

gradient descent from error functions and requires a very long processing time. This is because

the architecture, learning rate, overfitting and the number of epochs in the training are still high

so that the solution is easy to fall into the optimum local. Gradient descent backpropagation is

also still not good at minimizing squared errors, so a suitable approach is needed in order to

improve the gradient descent backpropagation learning process. The performance of Adaptive

Estimation moment to minimize the squared error in backpropagation gradient descent algorithm.

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 30

ADAM can update the parameters of the output torque which is a torque distribution first and

second moments in backpropagation gradient descent. The purpose of this study is to minimize

the squared error at each iteration (epoch) at the output of the neural network. The results showed

that ADAM can minimize the squared error at each iteration (epoch) at the output of neural

networks.

2. Adaptive Moment Estimation And Gradient Descent Backpropagation Algorithms

2.1 Adaptive Moment Estimation

ADAM is used for optimizing a gradient descent learning algorithm to minimize the objective

function (often called the loss function E (x)) on various parameters such as weights and biases.

Error in backpropagation is the mechanism used to modify network parameters before

initialization parameters to get optimized and can produce output is approaching the target output.

In the error back propagation neural network used, the process of calculating the feedforward

output one by one and calculate the error component obtained in the last layer. Gradient is

calculated on backpropagation to get the network to be optimized.Here are the steps - steps

ADAM as follows [12]:

 Initialization mweight (t), mbias (t), vweight (t) and vbias (t) = 0

 If the first iteration is t = 1, t = 1-1 = 0 (time step / early iterations on the input)

 Gradient calculation for estimating the first moment in time step = 𝑔𝑡
 𝐸

 𝑊𝑖𝑘
𝑜

 The calculation of the estimated first moment (mt) weight and bias can be done after receiving

the derivative calculation squared error in the output layer by the following equation:

𝑚𝑤𝑒𝑖𝑔ℎ𝑡(𝑡) = 𝛽1 ∗ 𝑚𝑤𝑒𝑖𝑔ℎ𝑡 (𝑡−1) + (1 − 𝛽1) ∗ 𝑔𝑡 (1)

mbias(t) = β1 ∗ mbias (t−1) + (1 − β1) ∗ gt

 The calculation of weight and bias correction estimation of the first moment ḿ𝑡 by the

following equation:

ḿ𝑤𝑒𝑖𝑔ℎ𝑡(𝑡) =
𝑚𝑤𝑒𝑖𝑔ℎ𝑡(𝑡)

1 − 𝛽1
𝑡 (2)

ḿ𝑏𝑖𝑎𝑠(𝑡) =
𝑚𝑏𝑖𝑎𝑠(𝑡)

1 − 𝛽1
𝑡

 Gradient calculation for estimating the first moment in time step = 𝑔𝑡
 𝐸

 𝑊𝑖𝑗
ℎ

 The calculation of the estimated second moment (vt) weight and bias can be done after

receiving the derivative calculation output to the hidden layer by the following equation:

𝑣𝑤𝑒𝑖𝑔ℎ𝑡(𝑡) = 𝛽2𝑣𝑤𝑒𝑖𝑔ℎ𝑡(𝑡−1) + (1 − 𝛽2) ∗ (𝑔𝑡)2 (3)

𝑣𝑏𝑖𝑎𝑠(𝑡) = 𝛽2𝑣𝑏𝑖𝑎𝑠(𝑡−1) + (1 − 𝛽2) ∗ (𝑔𝑡)2

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 31

 The calculation of weight and bias correction the estimated second moment Ṽ𝑡 by the following

equation:

Ṽ𝑤𝑒𝑖𝑔ℎ𝑡(𝑡) =
𝑣𝑤𝑒𝑖𝑔ℎ𝑡(𝑡)

1 − 𝛽2
𝑡 (4)

Ṽ𝑏𝑖𝑎𝑠(𝑡) =
𝑣𝑏𝑖𝑎𝑠(𝑡)

1 − 𝛽2
𝑡

 Parameter updates weight and bias by the following equation:

𝑤𝑤𝑒𝑖𝑔ℎ𝑡(𝑡) = 𝑤𝑤𝑒𝑖𝑔ℎ𝑡(𝑡−1) − ∗
ḿ𝑤𝑒𝑖𝑔ℎ𝑡(𝑡)

√Ṽ𝑤𝑒𝑖𝑔ℎ𝑡(𝑡) +

(5)

𝑤𝑏𝑖𝑎𝑠(𝑡) = 𝑤𝑏𝑖𝑎𝑠(𝑡−1) − ∗
ḿ𝑏𝑖𝑎𝑠(𝑡)

√Ṽ𝑏𝑖𝑎𝑠(𝑡) +

2.2 Gradient Descent Backpropagation

Backpropagation gradient descent algorithm to minimize Square Error (SE) for the multilayer

feedforward neural network. The learning rule to change the weights and bias on the output

neuron layer and hidden layer neurons The following steps - steps in the gradient descent

backpropagation ADAM [13]:

 Initialize the weights randomly on each neuron located in the input layer, hidden layer and

output layer.

 Phase feed forward propagation:

1. Calculate each neuron in the hidden layer to the equation:

𝑛𝑒𝑡𝑖𝑗
ℎ = ∑ 𝑋𝑖𝑊𝑖𝑗

ℎ

𝑖=1

+ 𝑤 𝑏𝑖𝑎𝑠_ 𝑗
ℎ (6)

2. Calculate each neuron's activation function in the hidden layer with sigmoid equation:

𝑓𝑖𝑛𝑛𝑒𝑡𝑛 = 1

1 + 𝑒−(𝑛𝑒𝑡𝑖𝑗
ℎ)

(7)

3. Calculates the total value of the output layer to the equation:

𝑛𝑒𝑡𝑖𝑘
𝑂 =

∑(𝑓 𝑖𝑛_𝑛𝑒𝑡 𝑛 ∗ 𝑤𝑖𝑘
𝑂

𝑛

𝑖=1

) + 𝑤 𝑏𝑖𝑎𝑠 _ 𝑘
𝑂

(8)

4. Calculates the sigmoid activation function in the output layer to the equation:

𝑓𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛= 1

1 + 𝑒−(𝑛𝑒𝑡𝑖𝑘
𝑂)

(9)

5. Calculates the error in the output layer based on the difference between the target and output

by the equation:

eoutput= Target − 𝑓𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛 (10)

6. Calculates the square error at the output layer to the equation:

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 32

Square Error = 1

2
∗ ∑(Target

k

− 𝑓𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛)2

(11)

7. Calculates the partial derivative of the weight and bias for each neuron in the output layer

with the equation:

 𝐸

 𝑊𝑖𝑘
𝑜 =

−(Target − 𝑓𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛) ∗ 𝑓 ′𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛

∗ 𝑓𝑖𝑛𝑛𝑒𝑡𝑛

(12)

 𝐸

 𝑊 𝑏𝑖𝑎𝑠
𝑂 = −(Target − 𝑓𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛) ∗ 𝑓 ′𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛

8. Calculates the partial derivative of the weight and the bias for each neuron in the hidden

layer with the equation:

 𝐸

 𝑊𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑗
ℎ

= − ∑(T − 𝑓𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛) ∗ 𝑓 ′𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛 ∗ 𝑤𝑖𝑘
𝑂

𝐤

∗ 𝑓′𝑖𝑛𝑛𝑒𝑡𝑛 ∗ Xi
(13)

 𝐸

 𝑊𝑏𝑖𝑎𝑠 𝑖
ℎ

= − ∑(T − 𝑓𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛) ∗ 𝑓 ′𝑜𝑢𝑡_𝑛𝑒𝑡 𝑛 ∗ 𝑤𝑖𝑘
𝑂 ∗ 𝑓′𝑖𝑛𝑛𝑒𝑡𝑛

𝐤

3. Methodology

The methodology is divided into two parts on the backpropagation network architecture, that is,

giving a feed forward for weighting and part of the backward feed for error values. Starting from

output, so that each neuron has a corresponding error value that roughly represents its contribution

to the original output. The steps to make a research design are as follows:

 Prepare data as enter 699 data which has 9 variables and 1 target variable for class.

 The pattern of designing network architecture is the number of neurons in the input layer, the

number of neurons in the hidden layer and the number of neurons in the output layer.

 Run backpropagation with adaptive moment estimation with random initial weights.

 Analysis.

3.1 Data Input

The data used in this research is data about Wisconsin Breast Cancer dataset from the University

of California Irvine (UCI) Machine Learning Repository. Data has 9 attributes were rated visually

with the appropriate class variables and defined for each record in the dataset. All values on 9

attributes are indexed from 1 - 10 interval ranges, while the range class value on breast cancer

cells is 2 for the benign category and 4 for the malignant category. The following Table 1

descriptions of datasets WBCD:

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 33

Table 1. Descriptions of datasets WBCD

Attribute Range interval

Clump Thickness 1-10

Uniformity of Cell Size 1-10

Uniformity of Cell Shape 1-10

marginal Adhesion 1-10

Single Epithelial Cell Size 1-10

Bare Nuclei 1-10

Bland Chromatin 1-10

normal Neucleoli 1-10

Mitoses 1-10

Class variable Benign cells (2) and malignant cells (4)

3.2 Block Diagram

The following figure 1 is a block diagram which aims to research done in the process is not out

of the specified path. Block diagram shown in Figure 1.

Data

Pre – Processing :

 Cleaning Data

 Sorting Data

 Normalisasi Data
Backpropagation

Neural Network

Calculation of the

feed forward

propagation

Calculation of the ADAM for

optimization of gradient descent

backpropagation

Calculation of the

derivative partial square

error for Gradient descent

Results for

update weight

and bias

Calculation of the

square error

Figure 1. Block diagram

Figure 1 can be explained that the block diagram above is the backpropagation neural network

architecture with multiple processes, namely:

 The data used is the data derived from Wisconsin Breast Cancer dataset from the University

of California Irvine (UCI) Machine Learning Repository.

 Pre-processing stage has three processes, namely:

1. Data Cleaning: used to fill in missing data values in as many as 16 data on the bare nuclei

variable using the equation Paulin & Santhakumaran median method [14]:

MEDIAN = size of
(𝑁+1)

2
 (14)

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 34

2. Sorting the data: is used to separate the data according to the class that is benign and

malignant.

3. Normalization of data: aims to change the value on the data value range 1-10 into a value

range of 0-1 by using the following equation [15]:

𝑋𝑖
′ = Xi − Xmin

Xmax − Xmin

(15)

3.3 Backpropagation Neural Networks Architecture

The data used for the research is binary value after cleaning data, the dataset is 699 data and has

9 variables and 1 target variable for the class. After the dataset is carried out in the pre-processing

stage, the data is then used as a dataset during testing to the input layer of the network that will

be calculated for each neuron in the hidden layer and output layer. The results (output) of the error

crater will be used as test data to see the minimization of the squared error. To test dataset, the

following figure 2. Backpropagation neural network architecture:

X9

X1

X2

X3

X4

X5

X6

X8

INPUT LAYER

X7

net 1

net 2

net 3

net 4

Y

HIDDEN LAYER OUTPUT LAYER

B1

B2
ʃ

ʃ

ʃ

ʃ

net_in 1

net_in3

net_in2

net_in4

Calculation of the hidden layer
Activation function sigmoid of the Hidden Layer

 net_output

 f _ net1

f _ net2

f _ net3

f _ net4

FEED FORWARD - PROPAGATION

 FEED BACK -

PROPAGATION

ʃ

Calculation of the output layer

net 5

net 6 ʃ

ʃ

net_in6

n_in5

f _ net6

f _ net5 W
5 (o

utp
ut)

W4 (output)

W3 (output)

W
2 (output)

W
1(output)

W
6

(o
ut

pu
t)

W
0
 (o

u
tp

u
t)

Activation function sigmoid of the Output Layer

w (11)

w (12)

w (13)

w (14)

w (15)

w (16)

w (21)

w (22)w (23)

w
 (2

4
)w

 (2
5
)

w
 (2

6
)

w (3
1)

w (32)

w (33)
w
 (34)

w
 (3

5
)

w
 (3

6
)

w (4
1)

w (4
2)

w (43)

w (44)

w
 (45)

w
 (4

6
)

w
 (
5
1
)

w
 (
5
2
)

w (5
3)

w (54)
w
 (55)w
 (56)w

 (
6
1
)

w
 (
6
2
)

w
 (6

3) w (6
4)

w (65)

w
 (66)

w
 (

7
1
)

w
 (

7
2
)

w
 (
7
3
)

w
 (7

4)

w (7
5)

w (76)

w
 (

8
1
)

w
 (

8
2
)

w
 (
8
3
)

w
 (
8
4
)

w (8
5)

w (86)

w
 (

9
1
)

w
 (

9
2
)

w
 (

9
3
)

w
 (
9
4
)

w
 (
9
5
)

w
 (9

6)

w (01)w
 (02)

w
 (0

3
)

w
 (0

4
)w

 (0
5
)

w
 (0

6
)

F_net output

 f _ net output

Figure 2. Backpropagation neural network architecture

Figure 2 is a back propagation neural network design. Input on this draft architecture adapted to

the feature dataset from the UCI Machine Learning is 9 neurons in the input layer. In the hidden

layer based on the calculation that has been calculated and determined, then the neurons in the

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 35

hidden layer of 6 neurons. And to output according to the data layer, called the output layer as

many as 1 neurons.

3.4 ADAM Architecture Design In Gradient Descent Backpropagation

The image used is 24-bit color image. The calculation of MSE and PSNR aims to determine how

much the image changes after message insertion. There is 1-bit storage up to 4-bit LSB to be

performed, each stego-image will be calculated MSE and PSNR values to determine which image

is better or how many better bits to store information or messages. The following is the formula

used to calculate MSE and PSNR. Using (2.2) & (2.3)

Here is a figure 3 is the architecture of ADAM on a gradient descent backpropagation which aim

to test dataset:

Input
Calculation of the

Hidden Layer

Calculation of the

Output Layer

Calculation of

the Square Error

Actual Output
Output produced

W hidden W output Error (E)

Calculation of the

Derivative Partial Error

in Output Layer

Calculation of the

First Adaptive

Moment Estimation

dW output

Calculation of the

Second Adaptive

Moment Estimation

dW hidden

Update

Weight

FEED FORWARD - PROPAGATION

 FEED BACK - PROPAGATION

Calculation of the

Derivative Partial Error

in Hidden Layer

dEdZ

Z

Figure 3. ADAM architecture on gradient descent backpropagation

Figure 3 is an architecture design of ADAM on a gradient descent backpropagation. In the feed

forward propagation process, the input data that will be calculated on a hidden layer and output

layer computations on. In the calculation results will be summed output layer to the actual value

output (target value) in the data, after the reduction process will be conducted gradient descent to

minimize the squared error propagation. In the propagation process takes partial derivative

calculation process of error in the weight and bias in the output layer. ADAM The first will be

done after getting the calculation of partial derivatives of the error in the output layer of weights

and biases. After getting the results of the partial derivative calculation on the weights and biases,

calculation to estimate the first moment and the moment that the first results will be corrected to

gain weight and bias in the output layer. ADAM second will be carried out after obtaining the

partial derivative calculation of error in hidden layer of weights and biases. After getting the

results of the partial derivative calculation on the weights and biases, carried out calculations to

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 36

estimate the second moment and the second moment results will be corrected to get the weights

and biases at the hidden layer, so that updates the weights and update the bias obtained.

4. Result and Discussion

The main objective of this research is to focus on the minimization of the squared error in the feed

forward propagation. Initial weights randomly in feed forward propagation and update weighs in

at feedbackward propagation process. The process of the feed forward propagation on network

performance and update of the buffer weight is affected by the provision of learning rate

parameter value on network performance can be seen in Table 2.

Table 2. Parameter Value for adaptive estimation moment in gradient descent backpropagation

Parameter information

Number Of Hidden Neurons 6

Activation Function Binary sigmoid

maximum Epoch 5

minimum Error 0:01

Learning Rate 0001

Initialization bias and weight

to network

Random

Architecture Multilayer Network:

Input: 9 Neuron

Hidden Layer: 6 neurons

Output: 1 neuron (second class)

Optimization In

Backpropagation

Adaptive Moment Estimation

 : 0.00000001 (10 ^ - 8)

The value of the Exponential for estimation of the first

moment (β1): 0.9

The value of the Exponential for the estimation of the

second moment (β2): 0999

The data consists of 699 data, the number of variables in the input layer 9 and 1 variable to the

target (have 2 classes). Later in the input data before, performed a pre proccesing to get the value

range of 0 - 1. The result of the implementation of this program is to minimization of the squared

error and the performance of the gradient descent back propagation neural network using ADAM,

so I know how the system back propagation neural network to recognize a given pattern. Tests

carried out with 5 testing, first on epoch 1, until the fifth test of the epoch 5. In the first test in

epoch 1 consists of 699 iteration process, so that by the fifth test at the epoch 5 has the overall

iterative process as much as 3494 iterations.

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 37

4.1 The First Test On EPOCH 1

The results of ADAM testing on gradient descent backpropagation for the first test on EPOCH 1

can be seen in Figure 4:

Figure 4. The squared error value in the output layer at epoch 1 starts from iteration 1 to

iteration 699

In the results, it can be seen in each iteration of the first test on epoch 1 from iteration 1 to iteration

466 getting an increase from the result of the squared error which is 0.2183443914320067 up to

0.2900015104017409. In the iteration of 467 until iteration 586 gets a decrease from the square

of the error which is valued at 0.28928014850209544 it decreases to 0.20971254074474288. In

the 587 iteration up to 699 iterations occurred an increase from the results of the error squared

value which was 0.2104010408243566 up to 0.324379559070086. So that the first test on epoch

1 in each iteration starting from iteration 1 to iteration 699 does not get a decrease / minimization

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 38

of the squared error. Here is a Fig. 5 which is a graph to see the results of the first test on Epoch

1:

Figure 5. Graph of the first test at epoch 1

4.2 The Second Test On EPOCH 2

The results of ADAM testing on gradient descent backpropagation for the second test on EPOCH

2 can be seen in Figure 6:

Figure 6. The squared error value in the output layer at epoch 2 starts from 700 iterations up to

iterations 1399

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 39

In the results, it can be seen in the second test on epoch 2 in each iteration of 700 iterations up to

iteration 1399 indicating a decrease / minimization of the squared error value of 700 iterations to

863 iterations which are 0.32498026050398193 decreased to 0.1899676752888724. In the

iteration process 864 up to iteration 1167 get an increase from the results of the error squared

value which is worth 0.1901636290061076 up to 0.25079291962345257. In the iteration process

1168 up to 1284 iterations get a decrease / minimization of the squared error which is

0.24978478229861384 decreases to 0.1794268266766979. In the iteration process 1285 up to

iteration 1399 get an increase from the result of the squared error which is 0.18006584703194672

rising to 0.2807332818651873. So that the second test on epoch 2 in each iteration for the entire

iteration of 700 to iteration 1399 gets a decrease / minimization of the squared error. Following

figure 7 is a graph to see the results of the second test on Epoch 2:

Figure 7. Graph of the second test at Epoch 2

4.3 The Third Test On EPOCH 3

The results of ADAM testing on gradient descent backpropagation for the third test on epoch 3

can be seen in Figure 8:

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 40

Figure 8. The squared error value in the output layer at epoch 3 starts from iterations 1400 to

iterations 2099

In the results, it can be seen in the third test on epoch 3 in each iteration from iteration 1400 to

iteration 2099 getting a decrease / minimization of the squared error value of iterations 1400 to

iteration 1545 which value 0.28091864926453175 decreases to 0.15492875987278124. In the

iteration of 1546 until iteration 1858 obtained an increase from the result of the squared error

value of 0.1550510538374394, rising to 0.22583708318335152. In the iteration 1859 to the 1980

iteration, the decrease / minimization of the error error value of 0.22549797498133206 decreased

to 0.14033876589092475. In the 1981 iteration up to 2099 iterations get an increase from the

results of the error squared value which is 0.14072494335883678 up to 0.2205961135239007. So

that the third test on epoch 3 in each iteration for the whole of iterations 1400 to iteration 2099

gets a decrease / minimization of the squared error. Following figure 9 is a graph to see the results

of the third test on Epoch 3:

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 41

Figure 9. Graph of the third test at Epoch 3

4.4 The Fourth Test On EPOCH 4

The results of ADAM testing on gradient descent backpropagation for the fourth test on epoch 4

can be seen in Figure 10:

Figure 10. The squared error value in the output layer at epoch 4 starts from the iteration 2100

to iteration 2799

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 42

In the results, it can be seen in the fourth test on epoch 4 in each iteration from iteration 2100 until

iteration 2799 gets a decrease / minimization of the square of error at the iteration of 2100 to

iteration 2244 which is 0.22048338304646564 decreasing to 0.12194312699269359. At iteration

2245 until iteration 2566 gets an increase from the result of the squared error value of

0.12206380052970295 up to 0.1809430190725432. In the iteration 2567 up to iteration 2693, the

decrease / minimization of error squares which is 0.17975220908210351 decreases to

0.10985521531074001. At iteration 2694 until iteration 2799 gets an increase from the result of

the squared error value which is 0.11016314136315486 up to 0.16105322504274178. So that the

fourth test on Epoch 4 in each iteration for the whole of the iteration 2100 until iteration 2799

gets a decrease / minimization of the squared error. Following figure 11 is a graph to see the

results of the fourth test on Epoch 4:

Figure 11. Graph of the fourth test at Epoch 4

4.5 The Fifth Test On EPOCH 4

The results of ADAM testing on gradient descent backpropagation for the fifth test in Epoch 5

can be seen in Figure 12:

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 43

Figure 12. The squared error value in the output layer at epoch 5 starts from the iteration 2800

to iteration 3494

In the results, it can be seen in the fifth test on epoch 5 in each iteration from iteration 2800 until

iteration 3494 gets a decrease / minimization of the squared error value at iterations 2800 to

iteration 2934 which is 0.16072535211362018 decreases to 0.0919597446264125. In the iteration

2935 until iteration 3257 get an increase from the results of the squared error value which is

0.09200385351776505 up to 0.14711608054493538. In the iteration 3258 up to iteration 3378,

the decline / minimization of the value of the results of the squared error of 0.14666476656742403

decreased to 0.07891650158907507. In the 3379 iteration up to iteration 3494 get an increase

from the results of the squared error value which is 0.07901542630350233 up to

0.1118082817986742. So that the fifth test on Epoch 5 in each iteration for the overall iteration

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 44

of 2800 until iteration 3494 gets a decrease / minimization of the squared error. Following figure

13 is a graph to see the results of the fifth test on Epoch 5:

Figure 13. Graph of the fifth test at Epoch 5

From the graph of the first test on Epoch 1 to the fifth test on Epoch 5, can be seen in Figure

Graph 14 which is the whole test above. The first test on EPO 1 to Fifth Test on EPO can be seen

in Figure 14:

Figure 14. The first test chart until the fifth test in epoch 1 through epoch 5

5. Conclusion

The first test on Epoch 1 is an increase in the value of the squared error. In the second test on

Epoch 2 to the fifth test at Epoch 5 there is minimization / decrease of squared error in each epoch

test. The results of tests that have been conducted on neural network networks namely ADAM on

gradient descent backpropagation can help the learning performance of neural network networks

on gradient descent backpropagation to minimize / decrease squared errors. Furthermore, a new

method analysis can be carried out for the learning level, so that it is expected that from the first

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 45

test on Epoch 1 to the fifth test at Epoch 5 it results in a decrease in the minimization of the

squared error.

REFERENCES

[1] Guan, N., Shan, L., Yang, C., Xu W., & Zhang, M., 2017. Delay Compensated

Asynchronous Adam Algorithm for Deep Neural Networks. Proceedings of the IEEE

International Symposium on Parallel and Distributed Processing with Applications and

2017 IEEE International Conference on Ubiquitous Computing and Communications, pp.

852 – 859.

[2] Wakitani, S., Yamamoto, T., & Ishimura, A., 2017. Study on an adaptive GMDH-PID

controller using adaptive moment estimation. Proceedings of the IEEE International

Conference on Systems, Man, and Cybernetics, pp. 1587 – 1591.

[3] Wu, M., Guo, S., Chen, X., Xing, N., & Zhong, C., 2016. LM–BP based operation quality

assessment method for OTN in Smart grid. Proceedings of the IEEE Network Operations

and Management Symposium.

[4] Ahmad, F., Isa, N., A., M., Osman M., K., & Hussain, Z., 2010. Performance comparison

of gradient descent and Genetic Algorithm based Artificial Neural Networks training.

Proceedings of the IEEE International Conference on Intelligent Systems Design and

Applications, pp. 604 – 609.

[5] Popa, C-A., 2014. Enhanced Gradient Descent Algorithms for Complex-Valued Neural

Networks. Proceedings of the IEEE International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing, pp. 272 – 279.

[6] Singh, B., K., Verma, K., & Thoke, A., S., 2015. Adaptive Gradient Descent

Backpropagation for Classification of Breast Tumor in Ultrasound Imaging. Proceedings

of the Elsevier International Conference on Information and Communication

Technologies 46(9): 1601 – 1609.

[7] Heravi, A., R., & Hodtani, G., A., 2018. A New Correntropy-Based Conjugate Gradient

Backpropagation Algorithm for Improving Training in Neural Networks. IEEE

Transactions on Neural Networks and Learning Systems 29(12) : 6252 – 6263.

[8] Li, Y., Zhu, L., Zhou, L-j., & Jiang, J., 2011. Study on the BP–GA model and its

application in water quality assessment. Proceedings of the IEEE International

Symposium on Water Resource and Environmental Protection, pp. 2781 – 2784.

[9] Achkar, R., Geagea, R., Mehio., & Kmeish, W., 2016. SmartCoach personal gym trainer:

An Adaptive Modified Backpropagation approach. Proceedings of the IEEE International

Multidisciplinary Conference on Engineering Technology, pp. 1 – 6.

[10] Mammadli, S., 2017. Financial time series prediction using artificial neural network based

on Levenberg–Marquardt algorithm. Proceedings of the Elsevier International

Conference on Theory and Application of Soft Computing, Computing with Words and

Perception 120(6): 602 – 607.

[11] Andayani, U., Nababan, E., B., Siregar, B., Muchtar, M., A., Nasution, T., H., & Siregar,

I., 2017. Optimization backpropagation algorithm based on Nguyen–Widrow adaptive

weight and adaptive learning rate. Proceeding of the IEEE International Conference on

Industrial Engineering and Application, pp. 363 – 367.

[12] Indolia, S., Goswami, A., K., Mishra, S., P., & Asopa, P., 2018. Conceptual Understanding

of Convolutional Neural Network – A Deep Learning Approach. Proceedings of the

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7689684
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7689684
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5681599
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5681599
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7031476
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7031476
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5681599
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5681599
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5962385
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5962385
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5871806

Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 46

Elsevier International Conference on Computational Intelligence and Data Science

132(10): 679 - 688.

[13] Srinivasan, N., Ravichandran, V., Chan, K., L., Vidhya, J., R., Ramakirishnan,

S., & Krishnan, S., M., 2002. Exponentiated backpropagation algorithm for multilayer

feedforward neural networks. Proceedings of the IEEE Proceedings of the 9th

International Conference on Neural Information Processing, 2002. ICONIP '02, pp. 327

– 331.

[14] Paulin, F., & Santhakumaran, A., 2010. Back Propagation Neural Network by Comparing

Hidden Neuron: Case study on Breast Cancer Diagnosis. International Journal of

Computer Application 2(4): 40 – 44.

[15] Chen, C., C., Kuo, C., Kuo, S., Y., & Chou, Y., H., 2015. Dynamic Normalization BPN

for Stock Price Forecasting. Proceedings of the IEEE International Conference on

Systems, Man, and Cybernetics, pp. 2855 - 2860.

https://ieeexplore.ieee.org/author/37276025400
https://ieeexplore.ieee.org/author/38223756300
https://ieeexplore.ieee.org/author/37085977167
https://ieeexplore.ieee.org/author/37085977167
https://ieeexplore.ieee.org/author/37275777500
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8534
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8534
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8534
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7363407
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7363407

