
Data Science : Journal of Computing and Applied Informatics Vol.9, No.1 (2025) 18-31

Data Science : Journal Of Computing And
Applied Informatics
Journal homepage: https://jocai.usu.ac.id

A Hybrid Cryptosystem Using Rprime RSA And Extended

Tiny Encryption (XTEA) For Securing Message

Zikri Akmal Santoso*1 , Mohammad Andri Budiman2 , Syahril Efendi3

1,2,3Master of Informatics Program, Faculty of Computer Science and Information Technology, Universitas Sumatera

Utara, Medan, Indonesia

*Corresponding Author: mandrib@usu.ac.id

ARTICLE INFO ABSTRACT
Article history:

Received 29 May 2024
Revised 13 June 2024
Accepted 4 July 2024
Available 29 January 2025

E-ISSN: 2580-829X
P-ISSN: 2580-6769

Ensuring the security of messages in sending message publicly is very important,

we must ensure the security of messages with one of security method called

cryptography. Focusing solely on security can affect the speed of message delivery

processes. Therefore, this research is conducted to provide solutions to both of
these issues. Thus, this research will discuss the Analysis of Hybrid Cryptography

Scheme in the combination of RPrime RSA and XTEA (Extended Tiny

Encryption) in securing instant messages. Hybrid cryptography is one of the

methods in cryptography that allows to enhance speed of message delivery with

messages encrypted by symmetric algorithms and the symmetric algorithm keys

will be encrypted using asymmetric algorithm’s public keys. RPrime RSA is an

asymmetric public key algorithm and one variant of RSA, which is a combination

of Rebalanced RSA and MPrime RSA algorithms. XTEA is a symmetric key

algorithm and improved version of the TEA algorithm. This research tested by

using strings with the value of k in RPrime RSA from 2 to 6 with unconstrained

modulus digits. The result of the test indicates that the required time for encryption
and decryption is proportional with the length of character, the time processing for

factorization to get d is proportional to the value of k.

Keyword: RPrime RSA, Extended Tiny Encryption Algortihm, Hybrid

Cryptosystem, Cryptography, Instant Messaging

How to cite:

Z. A. Santoso, M. A. Budiman
and S. Efendi, “A Hybrid
Cryptosystem Using Rprime

RSA And Extended Tiny
Encryption (XTEA) For
Securing Message,” Journal of
Computing and Applied
Informatics, vol. V9, no.1, Jan.
2025, doi: 10.32734/jocai.v9.i1-
16574

ABSTRAK

Memastikan keamanan pesan dalam pengiriman pesan secara publik sangat

penting. Kita harus menjamin keamanan pesan dengan metode keamanan yang

disebut kriptografi. Jika fokus pada keamanan dapat mempengaruhi kecepatan

proses pengiriman pesan. Maka, penelitian ini menyediakan solusi untuk kedua

masalah tersebut. Dalam penelitian ini membahas Analisis Kriptografi skema

Hibrida pada kombinasi RPrime RSA dan XTEA (Extended Tiny Encryption)

dalam pengamanan pesan cepat. Kriptografi Hibrida adalah metode dalam

kriptografi yang dapat meningkatkan kecepatan dalam pengiriman pesan dengan
melakukan enkripsi pesan menggunakan algoritma simetris. Serta kunci dari

algoritma simetris akan dienkripsi menggunakan kunci publik dari algoritma

asimetris. RPrime RSA adalah algoritma asimeris kunci publik dari salah satu

varian RSA, yang merupakan kombinasi dari Algoritma Rebalanced RSA dan

Mprime RSA. XTEA adalah algoritma kunci simetris yang merupakan

peningkatan versi dari algoritma TEA. Penelitian telah di uji menggunakan teks

dengan nilai k pada RPrime RSA dari 2 sampai 6 dengan modulus digit yang tidak

dibatasi. Hasil pengujiannya didapati bahwa waktu yang dibutuhkan untuk proses

enkripsi dan dekripsi berbanding lurus dengan panjang karakter dan waktu proses

faktorisasi untuk mendapatkan nilai d adalah berbanding lurus dengan nilai k.

Keyword: Rprime RSA, Extended Tiny Encryption Algorithm, Kriptografi,
Kriptografi Hibrida, Pesan Cepat

This work is licensed under a Creative

Commons Attribution-ShareAlike 4.0

International.

http://doi.org/10.32734/jocai.v9.i1-16574

https://jocai.usu.ac.id/
mailto:mandrib@usu.ac.id
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://doi.org/10.32734/jocai.v9.i1-16574
https://orcid.org/0000-0002-7716-2206
https://creativecommons.org/licenses/by-sa/4.0/

19

Data Science : Journal of Computing and Applied Informatics Vol.9, No.1 (2025) 18-31

1. Introduction

The proliferation of digital communication has brought forth numerous challenges, chief among them
being the prevalence of theft and interception of messages. Securing digital information from unauthorized

access and manipulation has become paramount. Cryptography emerges as a fundamental technique to address

these concerns.
Hybrid cryptosystem is a method that combine between Asymmetric and Symmetric cryptography

algorithm. Speed of message delivery process can be deliver with this method because to encrypt and decrypt

message symmetric algorithm can be used to get small computation and to approach the security of key of

symmetric algorithm, Asymmetric algorithm can be use to encrypt or decrypt the key with public and private
key.

This research will discuss the analysis of Hybrid cryptosystem scheme in combining Rprime RSA and

XTEA Algorithm for securing the message. Rprime RSA is an asymmetric public key algorithm which one
variant of RSA, RPrime RSA is combination between Rebalanced RSA and MPrime RSA, It has been

standardized in PKCS #1 and is reported to be 27 times faster than the conventional RSA algorithm [5].

Extended Tiny Encryption Algorithm (XTEA) is a symmetric key algorithm and improved version of the TEA

algorithm, XTEA was designed to correct weaknesses of TEA Algorithm [7]. XTEA has more complex

operations and the sequence within the Shift, ⊕ operations, and several additional additions [1].

2. Literature Review

2.1. Cryptography

Cryptography is the art of securing data and validating its integrity once it's secured. It involves two main

steps, encryption and decryption. Encryption renders data unreadable to unauthorized parties through the use
of a key, turning the data into ciphertext. Decryption reverses the encryption process, making the data readable

again for authorized recipients.

A cryptographic algorithm based on a key can be categorized into two main types: symmetric and
asymmetric. Symmetric, also known as conventional, cryptography utilizes the same key for both encryption

and decryption. In contrast, asymmetric cryptography employs different keys for these processes. In

asymmetric cryptography, the encryption key, known as the public key, can be openly distributed, while the

decryption key, known as the private key, is kept securely for personal use. Hence, asymmetric cryptography
is also referred to as public key cryptography.

2.2. Hybrid Cryptosystem

Hybrid Cryptosystem is a method that used for combining two types of cryptography algorithm which
that symmetric cryptography and asymmetric cryptography, Hybrid cryptosystem prevent asymmetric

algorithm or public key scheme to encrypt the large amount of data [4], with this method the plaintext will be

encrypted by symmetric algorithm and than the key of symmetric algorithm will be secured by using
asymmetric algorithm[4]. With this method the sender can encrypt the large amount of data using symmetric

with small size of cipher text and the key of symmetric will be secured by asymmetric algorithm with small

cost because the key is not large as data that will be encrypt even with big computation of asymmetric algorithm

[6].

3. Method

3.1. RPrime RSA
Rprime RSA is an asymmetric public-key algorithm, a fusion of Rebalanced RSA and MPrime RSA. It

has been standardized in PKCS #1 and is reported to be 27 times faster than the conventional RSA algorithm

[5]. The security of RPrime RSA, as well as Rebalanced RSA, relies on the strength provided by the private

exponent d. As Public Key Algorithm, Rprime RSA is divided into three process Namely, key generation,
encryption and decryption are as follows:

Key Generation :

1. Determine 𝑘 and select 𝑘 prime numbers: 𝑝1 , 𝑝2 , … , 𝑝𝑘 such that 𝐺𝐶𝐷(𝑝1 − 1 , 𝑝2 − 1, … , 𝑝𝑘 − 1) = 2.

2. Calculate :

𝑛 = 𝑝1 × 𝑝2 × … × 𝑝𝑘

𝜙(𝑛) = (𝑝1 − 1)(𝑝2 − 1) … (𝑝𝑘 − 1)

20

Data Science : Journal of Computing and Applied Informatics Vol.9, No.1 (2025) 18-31

Generate 𝑘 random numbers 𝑑𝑝1, 𝑑𝑝2, … , 𝑑𝑝𝑘 such that:

𝑑𝑝1 ≡ 𝑑𝑝2 ≡ ⋯ ≡ 𝑑𝑝𝑘 (𝑚𝑜𝑑 2),

𝐺𝐶𝐷 (𝑑𝑝1 , 𝑝1 − 1) = 1,

𝐺𝐶𝐷 (𝑑𝑝2 , 𝑝2 − 1) = 1,

and so on up to 𝑑𝑝𝑘 , 𝐺𝐶𝐷(𝑑𝑝𝑘 , 𝑝𝑘 – 1) = 1.

3. Calculate 𝑑 d using the Chinese Remainder Theorem (CRT) such that:

𝑑 ≡ 𝑑𝑝1 (𝑚𝑜𝑑 𝑝1 − 1)

𝑑 ≡ 𝑑𝑝2 (𝑚𝑜𝑑 𝑝2 − 1)

𝑑 ≡ 𝑑𝑝𝑘 (𝑚𝑜𝑑 𝑝𝑘 − 1)
And so on for the remaining prime factors.

4. Calculate 𝑒 = 𝑑−1 (𝑚𝑜𝑑 𝜙(𝑛))

5. Public key is (𝑛, 𝑒) and private key is (𝑝1, 𝑝2, … , 𝑝𝑘 , 𝑑𝑝1, 𝑑𝑝2, … 𝑑𝑝𝑘)

Encryption:

1. Input plaintext as (𝑀)

2. Calculate ciphertext using 𝐶 = 𝑀𝑒 𝑚𝑜𝑑 𝑛

Decryption:

1. Input ciphertext as (𝐶)

2. Calculate cipher text using 𝑀 = 𝐶𝑑 𝑚𝑜𝑑 𝑛

3.2. Extended Tiny Encryption Algorithm

XTEA (Extended Tiny Encryption Algorithm) is a symmetric key algorithm. It is an evolution of the TEA

(Tiny Encryption Algorithm) algorithm. The distinction from the previous algorithm lies in more complex

operations and the sequence within the Shift, ⊕ operations, and several additional additions. It employs a
distinct round function that alters the sections of the key utilized in each round. The i-th iteration of XTEA,

bears resemblance to the i-th iteration of TEA [1].

Encryption and decryption will follow this steps:

The 128-bit inputted key will be divided into 4 sub-blocks, each consisting of 𝑆[0] = 32 bits, 𝑆[1] = 32 bits,

𝑆[2] = 32 bits, and 𝑆[3] = 32 bits :

1. The plaintext block, which is 64 bits, is then split into 2 sub-blocks, 𝑣0 = 32 bits and 𝑣1 = 32 v bits. The

process is initialized with a variable 𝑖 = 1.

2. During encryption, the plaintext sub-block 𝑣0 is processed using keys according to the formula 𝑣0 +=

 (((𝑣1 ≪ 4) ⊕ (𝑣1 ≫ 5) + 𝑣1) ⊕ (𝑠𝑢𝑚 + 𝑆 [𝑠𝑢𝑚 ^ 3]). Similarly, the plaintext sub-block

𝑣1 is processed using keys as 𝑣 1 + = (((𝑣0 ≪ 4) ⊕ (𝑣 0 ≫ 5) + 𝑣0) ⊕ (𝑠𝑢𝑚 +

 𝑆 [(𝑠𝑢𝑚 ≫ 11) ^ 3]).

3. During decryption, the ciphertext sub-block 𝑣 1 is processed using keys according to the formula 𝑣 1 − =

 (((𝑣 0 ≪ 4) ⊕ (𝑣 0 ≫ 5) + 𝑣 0) ⊕ (𝑠𝑢𝑚 + 𝑆 [(𝑠𝑢𝑚 ≫ 11) ^ 3]). Similarly, the plaintext

sub-block 𝑣0 is processed as 𝑣0 − = (((𝑣 1 ≪ 4) ⊕ (𝑣 1 ≫ 5) + 𝑣 1) ⊕ (𝑠𝑢𝑚 +

 𝑆[𝑠𝑢𝑚 ^ 3])).

4. Then, the process increments 𝑖 = 𝑖 + 1.

5. If the process has not reached 32 rounds, then repeat the process from step 5. [8]

3.3. RPrime RSA and XTEA Using Hybrid Cryptosystem.

As symmetric algorithm XTEA will be used to encrypt the plain text / original message. And as

asymmetric key algorithm RPrime RSA will be used to encrypt the encryption key of XTEA. In figure 1, we
can see that Alice (sender) want to send a message to bob (recipient) through public network/unsecure network.

Alice’s message/plaintext will be encrypted by using XTEA with key encryption and the output will be

ciphertext, then the key encryption (plainkey) of plaintext will be encrypted by using RPrime RSA with Bob’s

Public key and the output will be cipherkey, then Alice send the ciphertext and cipherkey to Bob, when
ciphertext and cipherkey received by Bob, the cipherkey will be decrypted by using RPrime RSA with Bob’s

21

Data Science : Journal of Computing and Applied Informatics Vol.9, No.1 (2025) 18-31

private key, once cipherkey decrypted as key, the ciphertext will be decrypted using XTEA with decrypted

key and the output will be plaintext / original message that sent by Alice.

Figure 1. Rprime RSA and EXTEA using hybrid cryptosystem

3.4. Kraitchik’s Factorization Algorithm

The Kraitchik Factorization Algorithm is a factorization algorithm developed by Maurice Kraitchik in 1920.

It is an extension of Fermat's difference of squares algorithm. Since Fermat's difference of squares does not

always return prime numbers as its factors and the modulus of RPrime RSA is generated from several prime

number multiplications, Fermat's difference of squares needs to be modified to factorize the modulus [2][3].
Below are the steps involved in the Kraitchik factorization algorithm:

1. Take the value of n which is the integer to be factorized.

2. Calculate 𝑥 = [√𝑛]

3. While 𝑥2 − 𝑘𝑛 ≥ 0 do :

a. Initialize the value of 𝑘 = 1

b. While 𝑥2 − 𝑘𝑛 ≥ 0 do :

i. 𝑦 = √(𝑥2 − 𝑘𝑛)

ii. if y is a perfect square and (𝑥 + 𝑦)𝑚𝑜𝑑 𝑛 ≠ 0 and (𝑥 − 𝑦) 𝑚𝑜𝑑 𝑛 ≠ 0 then the factor of n are

𝑝 = 𝐺𝐶𝐷(𝑥 + 𝑦, 𝑛) dan 𝑞 = 𝐺𝐶𝐷(𝑥 − 𝑦, 𝑛), then stop.

iii. Otherwise, 𝑘 = 𝑘 + 2

c. Within the iteration 𝑥 = 𝑥 + 1

4. Result and Discussions

4.1. Key Generation using RPrime RSA

In hybrid cryptosystem the recipient should have private key and public key to receive the message from

sender.

Calculate 𝑝1, 𝑝2, … 𝑝𝑘 with 𝑘 = 3.

System will generate randomely 𝑝1, 𝑝2, 𝑝3 and the results are:

𝑝1 = 17, 𝑝2 = 11, 𝑝3 = 23

𝐺𝐶𝐷(17 − 1,11 − 1) = 𝐺𝐶𝐷(16,10) = 2
𝐺𝐶𝐷(11 − 1,23 − 1) = 𝐺𝐶𝐷(10,22) = 2
𝐺𝐶𝐷(17 − 1,23 − 1) = 𝐺𝐶𝐷(16,22) = 2

22

Data Science : Journal of Computing and Applied Informatics Vol.9, No.1 (2025) 18-31

Calculate 𝑛 = 𝑝1 × 𝑝2 × … 𝑝𝑘 and 𝜑(𝑛) = (𝑝1 − 1) × (𝑝2 − 1) × (𝑝𝑘 − 1).

𝑛 = 17 × 11 × 23 = 4301

𝜑(𝑛) = (17 − 1) × (11 − 1) × (23 − 1) = 16 × 10 × 22 = 3520

System will generate randomly 𝑑𝑝1, 𝑑𝑝2 , … , 𝑑𝑝𝑘 as much as 𝑘.

with these conditions:

𝑑𝑝1=𝑑𝑝2=...=𝑑𝑝𝑘 (mod 2)

𝐺𝐶𝐷(𝑑𝑝1, 𝑝1 − 1) = 1
𝐺𝐶𝐷(𝑑𝑝2, 𝑝2 − 1) = 1
𝐺𝐶𝐷(𝑑𝑝𝑘 , 𝑝𝑘 − 1) = 1

𝑑𝑝1 = 9 , 𝑑𝑝2 = 3, 𝑑𝑝3 = 5

𝐺𝐶𝐷(9,16) = 1
𝐺𝐶𝐷(3,10) = 1
𝐺𝐶𝐷(5, 22) = 1

Calculate 𝑑 = 𝑥1 ∩ 𝑥2 ∩ 𝑥3 with CRT

d ≡ 9(mod 16)

d ≡ 3 (mod 10)
d ≡ 5 (mod 22)

𝑥1 = { 9, 25, 41, 57, 73 ,89 ,105, 121, 137, 153, … ,249, 265, 281, 297, 𝟑𝟏𝟑 … }
𝑥2 = { 3, 13, 23, 33, 43, 53, 63, 73, 83, 93, … ,253, 263, 273, 283, 293, 303, 𝟑𝟏𝟑, … }

𝑥3 = { 5, 27, 49,71, 93, 115, 137, 159,181, 203, 225, 247, 269, 291, 𝟑𝟏𝟑, … }

𝑑 = 𝑥1 ∩ 𝑥2 ∩ 𝑥3 = 313

Calculate e with e = d−1 mod φ(n)

𝑒 = 𝑑−1 (𝑚𝑜𝑑 𝜑(𝑛))

𝑒 = 313−1 (𝑚𝑜𝑑 3520) = 1417

Public key results are:

𝑛 = 4301
𝑒 = 1417

Private key results are:

𝑝1 = 17, 𝑝2 = 11, 𝑝3 = 23
𝑑𝑝1 = 9, 𝑑𝑝2 = 3, 𝑑𝑝3 = 5

4.2. Message encryption using XTEA

key : “RAHASIAKITASEMUA”

message : “ZIKRI AS”

128-bit will be divided to 4 sub blocks

with 𝑠[0] = 32 𝑏𝑖𝑡, 𝑠[1] = 32 𝑏𝑖𝑡, 𝑠[2] = 32 𝑏𝑖𝑡, 𝑠[3] = 32 𝑏𝑖𝑡

key : “RAHASIAKITASEMUA” = {82 65 72 65 83 73 65 75 73 84 65 83 69 77 85 65}

𝑆[0] = ((82 ^ 255) ≪ 24) ∨ ((65 ^ 255) ≪ 16) ∨ ((72 ^ 255) ≪ 8) ∨ ((65 ^ 255))

𝑆[0] = ((82 ≪ 24) ∨ (65 ≪ 16) ∨ (72 ≪ 8) ∨ (65))

𝑆[0] = 1375731712 ∨ 4259840 ∨ 18432 ∨ 65

𝑆[0] = 1380010049

𝑆[1] = ((83 ^ 255) ≪ 24) ∨ ((73 ^ 255) ≪ 16) ∨ ((65 ^ 255) ≪ 8) ∨ ((75 ^ 255))

𝑆[1] = ((83 ≪ 24) ∨ (73 ≪ 16) ∨ (65 ≪ 8) ∨ (75))

23

Data Science : Journal of Computing and Applied Informatics Vol.9, No.1 (2025) 18-31

𝑆[1] = 1392508928 ∨ 4784128 ∨ 16640 ∨ 75

𝑆[1] = 1397309771

𝑆[2] = ((73 ^ 255) ≪ 24) ∨ ((84 ^ 255) ≪ 16) ∨ ((65 ^ 255) ≪ 8) ∨ ((83 ^ 255))

𝑆[2] = ((73 ≪ 24) ∨ (84 ≪ 16) ∨ (65 ≪ 8)𝑂𝑅 (83))

𝑆[2] = 1224736768 ∨ 5505024 ∨ 16640 ∨ 83

𝑆[2] = 1230258515

𝑆[3] = ((69 ^ 255) ≪ 24) ∨ ((77 ^ 255) ≪ 16) ∨ ((85 ^ 255) ≪ 8) ∨ ((65 ^ 255))

𝑆[3] = ((69 ≪ 24) ∨ (77 ≪ 16) ∨ (85 ≪ 8) ∨ (65))

𝑆[3] = 1157627904 ∨ 5046272 ∨ 21760 ∨ 65

𝑆[3] = 1162696001

plaintext with 64 bit will be divided to 2 subblock which that v0= 32 bit and v1= 32 bit

Plaintext : “ZIKRI AS”

𝑣0 = ((90 ≪ 24) ∨ (73 ≪ 16) ∨ (75 ≪ 8) ∨ (82))

= (1509949440 ∨ 4784128 ∨ 19200 ∨ 82)

= 1514752850

𝑣1 = ((73 ≪ 24) ∨ (32 ≪ 16) ∨ (65 ≪ 8) ∨ (83))

= (1224736768 ∨ 2097152 ∨ 16640 ∨ 83)

= 1226850643

Intiate delta with 0𝑥9𝐸3779𝐵9 (−1640531527 in integer) and 32 rounds (n), calculate v0 dengan with value

of 𝑠𝑢𝑚 = 0. Calculate with 32 bit int. the limit has −2147483648 to 21447483647

𝑑𝑒𝑙𝑡𝑎 = −1640531527 (0𝑥9𝐸3779𝐵9)

𝑠𝑢𝑚 = 0

encryption process for plaintext subblock v0 calculate by :

𝑣0 + = (((𝑣1 ≪ 4) ⊕ (𝑣1 ≫ 5) + 𝑣1) ⊕ (𝑠𝑢𝑚 + 𝑆 [𝑠𝑢𝑚 ^ 3])

and for subblocak v1 calculate by :

𝑣1 + = ((((𝑣0 ≪ 4) ⊕ (𝑣0 ≫ 5) + 𝑣0) ⊕ (𝑠𝑢𝑚 + 𝑆 [𝑠𝑢𝑚 ≫ 11 ^ 3]).

initiated 𝑆, 𝑣0, 𝑣1 result by these values :

𝑆[0] = 1380010049

𝑆[1] = 1397309771

𝑆[2] = 1230258515

𝑆[3] = 1162696001

𝑣0 = 1514752850

𝑣1 = 1226850643

Round 1 :

𝑣0 + = ((1226850643 ≪ 4) ⊕ (1226850643 ≫ 5) + 1226850643) ⊕ (𝑠𝑢𝑚 + 𝑆[𝑠𝑢𝑚^3])

𝑣0 + = ((−1845226192 ⊕ 38339082) + 1226850643) ⊕ (0 + 𝑆 [0^3])

𝑣0 + = ((−1845226192 ⊕ 38339082) + 1226850643) ⊕ (0 + 𝑆 [0])

𝑣0 + = ((−1845226192 ⊕ 38339082) + 1226850643) ⊕ (1380010049)

𝑣0 = −445293538

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑑𝑒𝑙𝑡𝑎

𝑠𝑢𝑚 = 0 + −1640531527

𝑠𝑢𝑚 = −1640531527

24

Data Science : Journal of Computing and Applied Informatics Vol.9, No.1 (2025) 18-31

𝑣1 + = ((−445293538 << 4) ⊕ (−445293538 >> 5) + −445293538) ⊕ (−1640531527 +

 𝑆 [−1640531527 >> 11^3])

𝑣1 + = ((1465237984 ⊕ −13915424 + −445293538) ⊕ (−1640531527 + 𝑆[3]).

𝑣1 + = ((1465237984 ⊕ −13915424 + −445293538) ⊕ (−1640531527 + 1162696001).

𝑣1 = −1214821577

continue for 32 rounds so that in 32 round we got the final result 𝑣0 = 395610080, 𝑣1 = 1559759634

The result for sub block 0 :

𝑐𝑡[0] = 𝑣0 ≫ 24^255 = 23

𝑐𝑡[0] = 𝑣0 ≫ 16^255 = 148

𝑐𝑡[0] = 𝑣0 ≫ 8^255 = 135

𝑐𝑡[0] = 𝑣0 ≫ 0^255 = 224

sub block 1

𝑐𝑡[0] = 𝑣1 ≫ 24^255 = 92
𝑐𝑡[0] = 𝑣1 ≫ 16^255 = 248
𝑐𝑡[0] = 𝑣1 ≫ 8^255 = 11
𝑐𝑡[0] = 𝑣1 ≫ 0^255 = 18

the final encryption result is:

Ciphertext : “ à\ø “ => [23,148,135,224,92,248,11,18] (in ascii)

4.3. Key Encryption Using RPrime RSA

Key : “RAHASIAKITASEMUA”

in ascii = {82 65 72 65 83 73 65 75 73 84 65 83 69 77 85 65}

Recipient’s Public Key (RPrime RSA)

𝑛 = 4301

𝑒 = 1417

Calculate with : 𝐶 = 𝑀𝑒 𝑚𝑜𝑑 𝑛

Calculate the cipherkey with each of key’s character:

𝐶[0] = 821417 𝑚𝑜𝑑 4301 = 3

𝐶[1] = 651417 𝑚𝑜𝑑 4301 = 3046

𝐶[2] = 721417 𝑚𝑜𝑑 4301 = 2571

𝐶[3] = 651417 𝑚𝑜𝑑 4301 = 3046

𝐶[4] = 831417 𝑚𝑜𝑑 4301 = 3517

𝐶[5] = 731417 𝑚𝑜𝑑 4301 = 1117

𝐶[6] = 651417 𝑚𝑜𝑑 4301 = 3046

𝐶[7] = 751417 𝑚𝑜𝑑 4301 = 4294

𝐶[8] = 731417 𝑚𝑜𝑑 4301 = 1117

𝐶[9] = 841417 𝑚𝑜𝑑 4301 = 2107

𝐶[10] = 651417 𝑚𝑜𝑑 4301 = 3046

𝐶[11] = 831417 𝑚𝑜𝑑 4301 = 3517

𝐶[12] = 691417 𝑚𝑜𝑑 4301 = 460

𝐶[13] = 771417 𝑚𝑜𝑑 4301 = 1573

𝐶[14] = 851417 𝑚𝑜𝑑 4301 = 629

𝐶[15] = 651417 𝑚𝑜𝑑 4301 = 3046

25

Data Science : Journal of Computing and Applied Informatics Vol.9, No.1 (2025) 18-31

and the result of cipherkey is :
{3, 3046, 2571, 3046, 3517, 1117, 3046, 4294, 1117,2107, 3046, 3517, 460, 1573, 629, 3046}

4.4. Cipherkey Decryption Using RPrime RSA

To decrypt the ciphertext, recipient need to decrypt the cipherkey using RPrime RSA.

Cipherkey: {3, 3046, 2571, 3046, 3517, 1117, 3046, 4294, 1117,2107, 3046, 3517, 460, 1573, 629, 3046}

Recipient’s private key:

𝑝1 = 17 , 𝑝2 = 11 , 𝑝3 = 23 ,
𝑑𝑝1 = 9 , 𝑑𝑝2 = 3 , 𝑑𝑝3 = 5,
𝑑 = 313

Calculate with : 𝑀 = 𝐶𝑑 𝑚𝑜𝑑 𝑛

Calculate the plainkey (original key) with each of cipherkey’s index:

𝑀[0] = 3313 𝑚𝑜𝑑 4301 = 82

𝑀[1] = 3046313 𝑚𝑜𝑑 4301 = 65

𝑀[2] = 2571313 𝑚𝑜𝑑 4301 = 72

𝑀[3] = 3046313 𝑚𝑜𝑑 4301 = 65

𝑀[4] = 3517313 𝑚𝑜𝑑 4301 = 83

𝑀[5] = 1117313 𝑚𝑜𝑑 4301 = 73

𝑀[6] = 3046313 𝑚𝑜𝑑 4301 = 65

𝑀[7] = 4294313 𝑚𝑜𝑑 4301 = 75

𝑀[8] = 1117313 𝑚𝑜𝑑 4301 = 73

𝑀[9] = 2107313 𝑚𝑜𝑑 4301 = 84

𝑀[10] = 3046313 𝑚𝑜𝑑 4301 = 65

𝑀[11] = 3517313 𝑚𝑜𝑑 4301 = 83

𝑀[12] = 460313 𝑚𝑜𝑑 4301 = 69

𝑀[13] = 1573313 𝑚𝑜𝑑 4301 = 77

𝑀[14] = 629313 𝑚𝑜𝑑 4301 = 85

𝑀[15] = 3046313 𝑚𝑜𝑑 4301 = 65

The result of decrypted key is {82 65 72 65 83 73 65 75 73 84 65 83 69 77 85 65}
Key : “RAHASIAKITASEMUA” (converted back to char)

4.5. Ciphertext Decryption Using XTEA

After the process above now we got the original key / plain key and we’ll decrypt the ciphertext by using

XTEA.

key : “RAHASIAKITASEMUA”

ciphertext : “ à\ø “

128-bit will be divided to 4 sub blocks, with 𝑠[0] = 32 𝑏𝑖𝑡, 𝑠[1] = 32 𝑏𝑖𝑡, 𝑠[2] = 32 𝑏𝑖𝑡, 𝑠[3] = 32 𝑏𝑖𝑡, The

output of this process will be same as encryption step above. And we got the result :

𝑆[0] = 1380010049

𝑆[1] = 1397309771

𝑆[2] = 1230258515

𝑆[3] = 1162696001

ciphertext with 64 bit will be divided to 2 subblock which that 𝑣0 = 32 𝑏𝑖𝑡 and 𝑣1 = 32 𝑏𝑖𝑡

26

Data Science : Journal of Computing and Applied Informatics Vol.9, No.1 (2025) 18-31

𝑣0 = ((23 << 24) ∨ (148 << 16) ∨ (135 << 8) ∨ (224))
= (385875968 ∨ 9699328 ∨ 34560 ∨ 224)
= 395610080

𝑣1 = ((92 << 24) ∨ (248 << 16) ∨ (11 << 8) ∨ (18))
= (1543503872 ∨ 16252928 ∨ 2816 ∨ 18)
= 1559759634

Initiate delta value with 0𝑥9𝐸3779𝐵9 (−1640531527 in integer) and 32 rounds (n), kalkulasi nilai v0 dengan

inisialisasi nilai sum = 0 * round. Calculate with 32 bit int. And has the limit between −2147483648 to

21447483647

𝑑𝑒𝑙𝑡𝑎 = −1640531527 (0𝑥9𝐸3779𝐵9)

𝑠𝑢𝑚 = 𝑑𝑒𝑙𝑡𝑎 ∗ 𝑟𝑜𝑢𝑛𝑑

𝑠𝑢𝑚 = −1640531527 ∗ 32

𝑠𝑢𝑚 = −957401312

decryption process for plaintext subblock v1 calculate by :

𝑣1− = (((𝑣0 << 4) ⊕ (𝑣0 >> 5) + 𝑣0) ⊕ (𝑠𝑢𝑚 + 𝑆[𝑠𝑢𝑚 >> 11 ^ 3]))

decryption process for plaintext subblock v0 calculate by :

𝑣0 −= (((𝑣1 << 4) ⊕ (𝑣1 >> 5) + 𝑣1) ⊕ (𝑠𝑢𝑚 + 𝑆 [𝑠𝑢𝑚 ^ 3]))

initiated 𝑆, 𝑣0, 𝑣1 result by these values :

𝑣0 = 395610080

𝑣1 = 1559759634

𝑑𝑒𝑙𝑡𝑎 = −1640531527 (0𝑥9𝐸3779𝐵9)

𝑠𝑢𝑚 = −957401312

Round 1 :

𝑣1− = (((𝑣0 << 4) ⊕ (𝑣0 >> 5) + 𝑣0) ⊕ (𝑠𝑢𝑚 + 𝑆[𝑠𝑢𝑚 >> 11 ^ 3])).

𝑣1− = (((395610080 << 4) ⊕ (395610080 >> 5) + 395610080) ⊕ (−957401312 +

 𝑆[−957401312 >> 11 ^ 3]))

𝑣1− = ((2034793984 ⊕ 12362815 + 395610080) ⊕ (−957401312 + 𝑆[2]))

𝑣1−= ((2034793984 ⊕ 12362815 + 395610080) ⊕ (−957401312 + 1230258515))

𝑣1 = −832355395

𝑠𝑢𝑚 = 𝑠𝑢𝑚 − 𝑑𝑒𝑙𝑡𝑎

𝑠𝑢𝑚 = −957401312 − (−1640531527)

𝑠𝑢𝑚 = 683130215

𝑣0 −= ((𝑣1 << 4) ⊕ (𝑣1 >> 5) + 𝑣1) ⊕ (𝑠𝑢𝑚 + 𝑆 [𝑠𝑢𝑚 ^ 3]))

𝑣0 −= ((1559759634 << 4) ⊕ (1559759634 >> 5) + 1559759634) ⊕ (683130215 +

 𝑆 [683130215 ^ 3]))

𝑣0 −= (−1294005664 ⊕ −19304571 + −617746266) ⊕ (683130215 + 𝑆[3]))

𝑣0 −= (−1294005664 ⊕ −19304571 + −617746266) ⊕ (683130215 + 1162696001))

𝑣0 = 395610080

Continue for 32 rounds so that in 32 round we got the final result 𝑣0 = 1514752850, 𝑣1 = 1226850643

27

Data Science : Journal of Computing and Applied Informatics Vol.9, No.1 (2025) 18-31

sub block 0

𝑝𝑡[0] = 1514752850 >> 24 ^ 255 = 90

𝑝𝑡[1] = 1514752850 >> 16 ^ 255 = 73

𝑝𝑡[2] = 1514752850 >> 8 ^ 255 = 75

𝑝𝑡[3] = 1514752850 >> 0 ^ 255 = 82

sub block 1

𝑝𝑡[4] = 1226850643 >> 24 ^ 255 = 73

𝑝𝑡[5] = 1226850643 >> 16 ^ 255 = 32

𝑝𝑡[6] = 1226850643 >> 8 ^ 255 = 65

𝑝𝑡[7] = 1226850643 >> 0 ^ 255 = 83

The final result for plaintext: “ZIKRI AS“

The final result is same with the first message/plaintext before the entire hybrid encryption process.

4.6. Running Time Process

The computation from key generation, encryption and decryption, and modulus factorization is done by
using python programming language and the operation g system is Sonoma 14.5. Text editor visual studio code

and with python 2.7. The processor is Apple M1 Pro and the memory is 16 GB. The results of running Time

Rprime RSA (Key generation, key encryption, and key decryption) is shown in Table 1. And the relation

between k and key generation RPrime RSA is depicted in Figure 2, the relation between k and Rprime RSA
encryption process depicted in Figure 3, the relation between k and decryption process is depicted in Figure 4.

Table 1. Running Time RPrime RSA (Key generation, key encryption, and key decryption) 16
Characters

k Key Generation (ms) Encryption(ms) Decryption(ms)

2 15.799999237060547 0.05793571472167969 0.049114227294921875

3 75.1960277557373 0.0591278076171875 0.05316734313964844

4 363.8792037963867 0.07390975952148438 0.06389617919921875

5 4553.959131240845 0.09584426879882812 0.09817413330078125

Figure 2. Running Time Key Generation of RPrime RSA (16 Character)

It can be seen in Figure 2, the key generation process time is proportional to the size of 𝑘 in RPrime RSA.

28

Data Science : Journal of Computing and Applied Informatics Vol.9, No.1 (2025) 18-31

Figure 3. Running Time Key Encryption of RPrime RSA (16 Character)

In Figure 3 depicted that the encryption process time is proportional to the size of 𝑘 in RPrime RSA with 16
characters.

Figure 4. Running Time Key Decryption of RPrime RSA (16 Character)

It can be seen in Figure 4, the decryption process time is proportional to the size of 𝑘 in RPrime RSA with 16

characters.

The results of running time with XTEA to encrypt and decrypt the message is shown in table 2, the relation

between encryption message process and character length with XTEA depicted in Figure 5, the relation
between decryption message process and character length depicted in Figure 6.

Table 2. Running Time XTEA (plain text message encryption)

Character Length Encryption (ms) Decryption (ms)

10 0.06604194641113281 0.06318092346191406

100 0.39505958557128906 0.2129077911376953

1000 3.0260086059570312 1.6632080078125

10000 30.39717674255371 15.347957611083984

100000 292.49119758605957 149.37996864318848

29

Data Science : Journal of Computing and Applied Informatics Vol.9, No.1 (2025) 18-31

Figure 5. Running Time Key Encryption of XTEA Algorithm

It can be seen in Figure 5, the encryption process time is proportional to the size of character length in XTEA

Algorithm.

Figure 6. Running Time Key Decryption XTEA Algorithm

In Figure 6 depicted that the encryption process time is proportional to the size of character length in XTEA
Algorithm.

The results of running time with Kraitchik factorization process is shown in table 3, we can see in column k

is the value of k, in the column n, p and d are the values of public key n, and factorized private key p and

private key d, in column 𝑝1, 𝑝2. . . 𝑝𝑘 (ms)is the running time process to get private key p1,p2..pk in millisecond

and in column d (ms) is the value to get private key d in millisecond , the relation between k and 𝑝1, 𝑝2, . . 𝑝𝑘

factorization with Kraitchik factorization process depicted in Figure 7, the relation between k and d

factorization with Kraitchik factorization process Figure 8.

Table 3. Running Time Kraitchik Factorization (Modulus Factorization for private key)

k n, p and d 𝑝1, 𝑝2. . . 𝑝𝑘 (ms) d (ms)

2
n= 267
p= [89,3]

d= 111

0.03790855407714844 0.1759529114

3

n= 5727

p= [83, 23, 3]
d= 219

0.4799365997314453 0.4909038544

4

n= 3814763

p= [83, 41, 19, 59]
d= 158129

1.2998580932617188 1.348018646240234

5
n= 10391040

p= [3, 61, 83, 67, 17]
4.768848419189453 4.804849624633789

30

Data Science : Journal of Computing and Applied Informatics Vol.9, No.1 (2025) 18-31

k n, p and d 𝑝1, 𝑝2. . . 𝑝𝑘 (ms) d (ms)

d= 151

6
n= 4627623
p= [67, 7, 3, 13, 23, 11]

d = 241

21.602869033813477 21.657943725585938

Figure 7. Running Time Kraitchik Factorization to get p (private key)

In Figure 7 depicted that factorization to get 𝑝1, 𝑝2, . . 𝑝𝑘 process time in Kraitchik factorization is proportional

to the size of 𝑘.

Figure 8. Running Time Kraitchik Factorization to get d (private key)

In Figure 8 depicted that factorization to get 𝑑 process time in Kraitchik factorization is proportional to the

size of 𝑘.

5. Conclusion

Based on the results of testing and analysis in this research using the Hybrid Combination method on the

RPrime RSA and XTEA (extended tiny encryption) algorithms, the following conclusions are drawn:

1. Analysis of the Hybrid method on the Rprime RSA and XTEA Algorithms was successfully conducted

on plaintext consisting of a collection of strings containing uppercase letters, lowercase letters, numeric

digits, and punctuation characters with different characters and string lengths.

2. During the key generation, encryption, and decryption processes in the Rprime RSA algorithm for

encrypting the key used to encrypt XTEA messages, security in transmitting the key over public networks

was enhanced. Moreover, the message encryption process became relatively fast with the XTEA

algorithm.

3. Analysis of the time taken for key generation, encryption, and decryption using the Rprime RSA and

XTEA algorithms resulted in values that are directly proportional to the number of keys generated and

31

Data Science : Journal of Computing and Applied Informatics Vol.9, No.1 (2025) 18-31

the number of characters in the encrypted message. The larger the number of keys or the number of

characters in the message, the longer the real running time for key generation, encryption, and decryption

processes.

4. Analysis of Modulus Factorization to get private key with Kraitchiik Algortihm. resulted in values that

are directly proportional to the generated modulo from value of 𝑘 and factorized 𝑑 and 𝑝1, 𝑝2, . . 𝑝𝑘 (private

key). The larger the value of 𝑘, the more difficult and time consuming the factorization process becomes

to obtain the private key.

REFERENCES

[1] Adriaanse, A Comparative Study of the TEA, XTEA, PRESENT and Simon lightweight

cryptographicschemes, Bachelor Seminar of Computer Science and Engineering.
[2] D. M. Bressoud, “Factorization and primality testing”, Springer Science & Business Media, 2012.

[3] M.S. Lydia, M.A. Budiman, and D. Rachmawati, “Factorization of Small RPrime RSA Modulus Using

Fermat’s Difference of Squares and Kraitchik’s Algorithms in Python,” Journal of Theoritical and
Applied Information Technology, vol. 99, no.11, pp.2770-2779, 2021.

[4] N. Smart, “Cryptography: An Introduction”, 3rd Ed., Bristol City, 1999.

[5] Paixao, C. A. Monteiro, and D. L. G. Filho, “An efficient variant of the RSA cryptosystem,” IACR
Cryptology ePrint Archive 2003 : 159.

[6] D. Rachmawati, A. Sharif, Jaysilen, and M. A, “Hybrid Cryptosystem Using Tiny Encryption Algorithm

and LUC Algorithm”. IOP Conference Series: Materials Science and Engineering, vol. 300, no.1, pp.1-

7, 2018.
[7] R. M. Needham and D. J. Wheeler, “Tea extensions”. Report, Cambridge University, Cambridge, UK,

1997.

[8] I. Syamsuddin, S. Ihdianty, E. Tungadi, Kasim, and Irawan, “XTEA Cryptography Implementation in
Android Chatting APP,” Journal of Information Technology and Its Utilization, vol.3, no. 2, pp.36-43,

2020.

