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Assessment of motor impulsivity often faces several challenges. Conventional 

assessments that rely on controlled settings often fail to capture impulsive 

behaviors in real-world contexts. This study proposes an automated approach using 
Multiple Object Tracking (MOT) technology to assess motor impulsivity. The aim 

was to develop a system for detecting and quantifying motor impulsivity in 

naturalistic, multi-person environments. By employing cutting-edge MOT 

algorithms, the solution tracks multiple individuals concurrently, enabling 

movement and interaction analyses. This methodology integrates MOT with 

behavioral models to identify motor impulsivity patterns such as abrupt trajectory 

changes or impulsive gesturing. Trained on real-world annotated datasets, the 

system ensures adaptability across settings. Our approach successfully 

distinguished impulsive movements from typical behavioral patterns, with an 

accuracy of 95.43%. This approach could revolutionize assessments by providing 

objective and quantitative measurements and facilitating enhanced diagnostics and 

personalized interventions. Extensive evaluations are required to assess real-time 
capabilities, robustness in occluded environments, and accurate impulsive pattern 

identification. These findings could enable broader clinical, research, and 

behavioral monitoring applications, advancing our understanding of the 

implications of motor impulsivity. 
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ABSTRAK 

Penilaian impulsivitas motorik seringkali menghadapi beberapa tantangan. 

Penilaian konvensional yang mengandalkan pengaturan terkendali sering gagal 

menangkap perilaku impulsif dalam konteks dunia nyata. Studi ini mengusulkan 

pendekatan otomatis menggunakan teknologi Multiple Object Tracking (MOT) 

untuk menilai impulsivitas motorik. Tujuannya adalah mengembangkan sistem 

untuk mendeteksi dan mengukur impulsivitas motorik dalam lingkungan 
naturalistik dengan banyak subjek. Dengan menggunakan algoritma MOT 

mutakhir, solusi ini melacak beberapa individu secara bersamaan, memungkinkan 

analisis gerakan dan interaksi. Metodologi ini mengintegrasikan MOT dengan 

model perilaku untuk mengidentifikasi pola impulsivitas motorik seperti 

perubahan lintasan mendadak atau gerakan impulsif. Dilatih pada dataset 

teranotasi dunia nyata, sistem ini memastikan adaptabilitas di berbagai pengaturan. 

Pendekatan kami berhasil membedakan gerakan impulsif dari pola perilaku tipikal, 

dengan akurasi 95.43%. Pendekatan ini dapat merevolusi penilaian dengan 

menyediakan pengukuran objektif dan kuantitatif serta memfasilitasi diagnostik 

yang lebih baik dan intervensi personal. Evaluasi ekstensif diperlukan untuk 

menilai kemampuan real-time, ketangguhan dalam lingkungan terhalang, dan 
identifikasi pola impulsif yang akurat. Temuan ini dapat memungkinkan aplikasi 

klinis, penelitian, dan pemantauan perilaku yang lebih luas, meningkatkan 

pemahaman kita tentang implikasi impulsivitas motorik. 

Keyword: Multiple Object Tracking, Impulsivitas Motorik, Kuantifikasi. 
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1. Introduction 

The ability to regulate bodily actions and impulses is a critical aspect of cognitive and behavioral development. 

However, this self-regulatory capacity is compromised in some individuals, leading to a condition known as 

motor impulsivity. It is characterized by a tendency to act without forethought or consideration, particularly in 
terms of physical actions. It involves making quick, spontaneous movements without fully assessing the 

potential consequences. Motor impulsivity is often observed in conjunction with several neuropsychiatric and 

neurodevelopmental disorders, including Attention-Deficit/Hyperactivity Disorder (ADHD) [1], [2], bipolar 
disorder [3], and certain depressive disorders [4], [5]. Children with ADHD are characterized by prominent 

symptoms of motor impulsivity, where affected individuals frequently struggle to remain still and engage in 

disruptive behaviors that can impede social interactions and academic performance [6]. The consequences of 
motor impulsivity extend beyond social and educational domains, as uncontrolled motor behaviors can also 

pose safety risks. The prevalence of injuries among school-aged children with ADHD ranges from 3% to 7% 

[7], and these individuals are nearly twice as likely to sustain injuries as their neurotypical peers.  

Although motor impulsivity can significantly impact various aspects of life, accurate and objective assessment 
of this complex phenomenon remains challenging. Traditional assessment methods[8], [9], [10] that often rely 

on subjective observations or controlled settings may fail to capture the nuances and real-world manifestations 

of impulsive motor behaviors. Accurate assessment of motor impulsivity is crucial for several reasons. First, 
the early and accurate identification of motor impulsivity can facilitate timely intervention, potentially 

mitigating adverse effects on academic, social, and overall well-being. Additionally, a deeper understanding 

of the underlying neurobiological and environmental factors that contribute to motor impulsivity could pave 

the way for more targeted and effective therapeutic approaches. Such approaches could benefit not only 

individuals with ADHD, but also those with related conditions characterized by impulsive motor behaviors. 

Quantitative techniques have shown promise in objectively assessing and characterizing motor impulsivity 

[11]. Among these approaches, motion tracking and analysis using specialized equipment such as cameras or 
inertial sensors have been explored. These methods allow for precise measurement and quantification of 

various movement features, including velocity, acceleration, and directional changes. Marker-based 3D motion 

capture systems, which rely on optical tracking of body-fixed reflective markers, are considered the clinical 
reference standard for human movement analysis [12]. Researchers have used this technique to analyze aspects 

of limb movement, such as range of motion, velocity, and coordination, in individuals with impulsivity-related 

disorders. Wearable inertial sensors, including accelerometers [13] and gyroscopes [14], have also been 

employed to track and quantify body movements directly. These sensors can be incorporated into specialized 
attire or attached to specific body segments to provide precise measurements of linear and angular kinematic 

data such as acceleration profiles, jerk (rate of change of acceleration), and movement trajectories.  

Almost all of the quantitative techniques mentioned above encounter limitations when assessing motor 
impulsivity in multiperson settings. It is difficult, or sometimes expensive, for optical motion capture and 

wearable sensor systems to accurately capture and differentiate the movements of multiple people at the same 

stage. This limitation is significant because many real-world scenarios involve interactions and dynamic 
environments involving multiple individuals. Addressing this gap is crucial as it could lead to more accurate 

and comprehensive assessments, enabling better understanding and interventions for impulsivity-related 

disorders. Overcoming this limitation requires the development of advanced motion tracking systems capable 

of reliably tracking and differentiating the movements of multiple subjects simultaneously, even in the 

presence of occlusions and overlapping movements. 

The proposed approach combines the strengths of two state-of-the-art computer vision models: You Only Look 

Once (YOLO) and ByteTrack [15]. YOLO is a renowned object-detection algorithm that rapidly and accurately 
identifies multiple objects, including individuals, within a given frame. On the other hand, ByteTrack is a 

highly efficient and reliable multi-object tracking algorithm capable of tracking multiple individuals across 

consecutive video frames, even in the presence of occlusions and complex movements [16]. By integrating 

these two powerful models, our system can reliably detect and track the movements of multiple individuals 
simultaneously, thereby enabling the extraction of precise kinematic data. These comprehensive motion data 

served as the foundation for the subsequent analysis and classification stages. 

To effectively model and classify the intricate patterns of motor impulsivity, we employed Bi-Directional Long 
Short-Term Memory (Bi-LSTM) [17] networks known for their ability to capture temporal dependencies and 

relationships in sequential data. Bi-LSTM has demonstrated remarkable success in various applications, 
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including gesture recognition [18], [19], [20], [21], video analysis [22], [23], and behavior detection [24], [25], 

[26], [27], making it well suited for the precise prediction and classification of motor impulsivity. 

Our proposed multi-person detection and tracking approach, combined with the powerful sequence-modeling 

capabilities of Bi-LSTM networks, addresses a crucial limitation of existing methods by enabling accurate and 

objective assessments of motor impulsivity in complex real-world scenarios involving multiple individuals 
interacting simultaneously. This advancement holds significant potential for improving diagnostic accuracy, 

informing targeted interventions, and deepening our understanding of the mechanisms underlying impulsive 

motor behavior. 

This study aimed to develop a cutting-edge automated methodology for assessing motor impulsivity in multi-
person environments, involving the following key components: 

a) Developing and evaluating a computer vision-based framework that leverages the power of the YOLO 

object detector and ByteTrack multiobject tracking algorithms to accurately detect and track the 
movements of multiple individuals simultaneously from video data. 

b) Exploring the incorporation of contextual information, such as environmental factors and social 

interactions, to enhance the model's ability to recognize and differentiate impulsive motor behaviors 

in various real-world scenarios. 
c) Assessing the robustness and generalizability of the proposed approach by evaluating its performance 

across diverse movement quantification scenarios and subject characteristics, including varying levels 

of occlusion, interaction dynamics, and individual movement styles. 
d) Conducting a comprehensive comparative analysis against existing quantitative techniques, 

highlighting the potential advantages and limitations of our multi-person detection and tracking 

approach, particularly in its ability to facilitate accurate and objective assessments of motor 

impulsivity in complex, real-world scenarios involving multiple interacting individuals. 

2. Methods 

The process of assessing movements that characterize impulsive motor skills has great challenges; in addition 

to complexity and dynamism, there are also limitations to the approach described above related to the problem 
of complexity in terms of the number of subjects studied in real-world conditions. We proposed a framework 

that optimizes the use of deep learning for the analysis and classification of related movements. This section 

explains in detail each stage that we go through, both in terms of the technique and the algorithm that we use. 
Many things are involved, including data collection techniques, data pre-processing, feature extraction, post-

processing, model training, classification, and model evaluation. Figure 1 illustrates the data generation 

process. 

 
Figure 1. The process of generating data utilizes a step-by-step methodology. The video processing 

technique generates x,y, and z coordinates at each key point of the body, which are then separated into 

organic and synthetic components. The organic and synthetic components were processed independently and 

the resulting dataset was fed into the Bi-LSTM model. 

2.1. Data Collection 

This research used two datasets as data sources: one public dataset consisting of 84 videos obtained from 
YouTube. These videos show the behavior of one subject or several subjects, which can be categorized as 

having impulsive motor characteristics. One peculiarity of these videos is that they have a minimum number 

of subjects of two. The video was collected via the YouTube Data API using ten relevant keywords: 

“impulsive,” “fighting,” “raging,” “self-injury,” “hyperactivity,” “hyperkinetics,” “restlessness,” “group,” 
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“class,” and “playing.” The eight most suitable videos for each keyword were selected. The second dataset, as 

a complement, was a collection of 30 personal videos from three children who had a tendency to be motor 
impulsive with various symptoms. Each video included in the dataset has special criteria, namely that it has a 

minimum duration of 10s, and the behavioral symptoms of motor impulsivity must be clearly visible. 

In total, we collected 135 video clips, and nearly 70% of the participants showed psychological disorders, 
exhibiting sudden behavior, unusual movements, or excessive activity. Each video was carefully annotated 

with metadata, such as location context, perceived environmental stimuli, and impulse duration. This 

comprehensive annotation process was carried out by the first author and a team consisting of six kindergarten 

teachers and six primary school teachers aged between 20 and 35 years. Each video was annotated by the first 

author and three teachers. 

2.2. Preprocessing 

To ensure a robust and diverse training dataset, thereby enhancing the generalization capabilities of the 
model, a strategic data augmentation process was implemented. Given the inherent challenges in acquiring a 

large-scale dataset of motoric impulsivity instances, particularly in multiperson scenarios, we employed a 

technique that effectively doubled the size of our initial dataset. Specifically, we reversed each video along the 

horizontal axis, mirroring the movements of the individuals, while preserving the corresponding labels 
associated with the level of motor impulsivity exhibited. Consequently, the augmented dataset comprising 270 

videos provided a more comprehensive representation of motoric impulsivity patterns, encompassing a wider 

range of spatial configurations and movement variations. 

2.3. Data Quantification 

YOLO (You Only Look Once) is a cutting-edge, real-time object detection system that operates quickly. It 

utilizes a single neural network to simultaneously predict bounding boxes and directly classify objects from 
full images in a single pass. In our study, we employed the latest stable version, YOLOv8, to estimate the 

human poses in video footage. The model analyzes a video stream to detect and identify key landmarks on the 

human body in a 2D coordinate space with high accuracy and speed. Figure 2 depicts the numbering scheme 

for the body keypoints detected by YOLOv8, which follows the COCO (Common Objects in Context) 

standard. 

 

Figure 2. Key points for human poses according to COCO output format (R/L: right/left). [28] 

This study concentrates on employing particular keypoints from YOLO to examine the movement organs, 
namely, the ears, knees, ankles, wrists, and elbows. This research also incorporated several anchor key points 

as reference points for relative movement. The keypoints used in this study are listed in table 2. Upon 

identifying the keypoints, the subsequent step involves implementing keypoint tracking in the video, providing 

labels for motion object tracking (MOT) identification, and mitigating the jitter that frequently arises during 
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the tracking process. The procedure is described in Algorithm 1. 

 

Table 1. Utilized Keypoints 

Type #KP Name 

Peripheral 

3 Right Elbow 

4 Right Wirst 

6 Left Elbow 

7 Left Wirst 

9 Right Knee 

10 Right Angkle 

12 Left Knee 

13 Left Ankle 

16 Right Ear 

17 Left Ear 

Anchor 

1 Neck 

2 Right Shoulder 

5 Left Shoulder 

8 Right Hip 

11 Left Hip 

 
ALGORITHM 1: KEYPOINT ANOTATION 

1 Open video capture with the provided video file path 

2 While video capture is opened: 

3  Read a frame from the video 

4  If frame is successfully read: 

5   Get the current timestamp in milliseconds 

6   Run YOLOv8 tracking and ByteTrack on the frame with specified parameters  

7   If keypoints are detected in the results: 

8    Foreach keypoint in the results: 

9     Get the object ID if available, otherwise set to -1 

10     Flatten and convert keypoint to list 

11     Append timestamp, object ID, and keypoints to keypoints data 

12   Visualize the results on the frame 

13   Write the annotated frame to the output video 

14   Display the annotated frame 

15  Else: 

16   Break the loop 

A total of 270 videos from the preprocessing stage were input into YOLO. Figure 3 shows the interim results 

of this process. 
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Figure 3. The video clips processed using YOLO display an overlay of skeleton keypoints that are 

subsequently quantized. 

When generating skeleton keypoints, YOLO frequently encounters difficulties due to interference with its 

environment, which can lead to inaccurate object identification and resulting jitter. To address this problem, 

we employed Kalman filters. [29]. It iteratively forecasts and determines the keypoint state using unreliable 
data by setting the initial keypoint location, predicting the state for each frame, and refining it by leveraging 

the detected keypoints. This method enables seamless keypoint tracking. Algorithm 2 is executed to handle 

jitter in the skeleton data.  

ALGORITHM 2: JITTER HANDLING  

1 Init a dictionary to separate keypoints by object ID 

2 Foreach data in keypoints data: 

3  Extract timestamp, object ID, and keypoints 

4  If object ID is not in dictionary: 

5   Init an empty list for the object ID 

6  Append timestamp and keypoints to the object ID list 

7 Init an empty list for smoothed keypoints data 

8 Foreach object ID and its keypoints in the dictionary: 

9  Apply smoothing to the keypoints  

10  Foreach smoothed keypoint: 

11   Append object ID and smoothed keypoint to smoothed keypoints data 

We evaluated each video according to the following requirements to assess the movement aspects: 

(1) Head Flexion: Local minimum distance between the ears and neck keypoints. 

(2) Upper Bending: Local maxima of the distance between the keypoints of the arm and shoulder. 

(3) Lower Bending: Local maxima of the distance between the foot and hip keypoints. 

(4) The ground truth was manually set using frame-by-frame inspection. 

The model records the keypoints and exports data as comma-separated values (.csv) files. We split the data 

into two types, based on the generation process. First, organic data containing the position of each keypoint 

per unit time were presented as two-dimensional [x,y] coordinates for the peripheral and anchor keypoints. We 
also obtained the [z] coordinate by leveraging the depth of the keypoint using Monocular Depth Estimation. 

Second, synthetic data were obtained by calculating the velocity, acceleration, motion trajectory, flexion 

distance, and flexion abduction from organic keypoint data. 

2.4. Data Analysis and Evaluation 

1) Monocular Depth Estimation: To assess the distance of objects from a camera using a single image, we 

employed a method known as Monocular Depth Sensing (MiDaS)[30]. This process entails the utilization 

of a neural network that has been extensively trained on datasets of images that possess corresponding 
depth maps. Upon presenting a new image, the network could predict the depth of each pixel with high 

accuracy. In our case, we utilized the MiDaS model, which is a pre-trained neural network capable of 

estimating the depth from a single image. Specifically, we employ the DPT_Large variant of the model 
to increase precision. Every frame in the video is input into the depth model to obtain a depth map. The 

depth map is a 2D array that represents the estimated distance from the camera for each pixel in the frame. 

By referencing the corresponding depth value for each detected keypoint (x, y), we can determine the z-

coordinates of that keypoint. Algorithm 3 illustrates the study of MiDaS. 

ALGORITHM 3: MONOCULAR DEPTH ESTIMATION  

1 input_batch = APPLY depth_transforms TO frame 

2 MOVE input_batch TO device (GPU/CPU) 

3 WITH torch.no_grad(): 

4  prediction = depth_model(input_batch) 

5  depth_map = RESIZE prediction USING bicubic interpolation 

6  REMOVE extra dimension from depth_map 

7 depth_map = CONVERT depth_map TO numpy array 
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2) Velocity Calculation: Velocity serves as a crucial factor in distinguishing between impulsive and 

controlled movements. Typically, higher velocities are suggestive of impulsive behavior. To determine 
the velocity of a keypoint's movement, it is necessary to calculate the distance between its initial and final 

positions, and the amount of time it takes to move from one position to another. It is essential to note that 

the initial position of the keypoint is(𝑥1, 𝑦1, 𝑧1) and the final position is (𝑥2, 𝑦2, 𝑧2), the transposition on 

each axis can be calculated using Δ𝑥 =  𝑥2 −  𝑥1 on the x axis, Δ𝑦 =  𝑦2 −  𝑦1 on the y axis, Δ𝑧 =  𝑧2 −
 𝑧 on the z axis. The displacement distance was calculated using the Pythagorean equation, which 

determines the displacement length. 

𝑑 = √Δ𝑥2 + Δ𝑦2 + Δ𝑧2 (1) 

The following formula can be used to determine the velocity: 

𝑣 =  
𝑑

𝑡
=  

√Δ𝑥2 + Δ𝑦2 + Δ𝑧2

𝑡
 

(2) 

To represent the subject’s motion more accurately, the standard deviation (𝑠𝑡𝑑) of the velocities was 

calculated. This could provide an insight into the variability of motion. A higher standard deviation may 

indicate more erratic or irregular movement patterns. 

𝑠𝑡𝑑 =  √
1

𝑁
∑(𝑣𝑖 − 𝑣̅)2

𝑁

𝑖=1

 (3) 

Where N is the total number of samples, 𝑣𝑖 is the velocity of the sample 𝑖, and 𝑣̅ is the mean velocity. This 

formula calculates the square root of the average of the squared differences between each velocity value 
and the mean velocity. It measures the dispersion or spread of velocity values around the mean velocity. 

 

3) Acceleration Calculation: Acceleration of a keypoint's movement in a three-dimensional space can be 
determined by calculating the change in vector velocity over a specific time frame. Acceleration 

monitoring can reveal sudden and jerky movements that are often indicative of impulsive behavior. To 

determine the initial and final velocities of the keypoint movement before the calculation, the change in 

the velocity per unit time was measured. It is assumed that the initial velocity of the keypoint is 𝑣1 =

 𝑣1𝑥 𝒊̂ + 𝑣1𝑦 𝒋̂ + 𝑣1𝑧𝒌̂ and the final velocity is 𝑣2 =  𝑣2𝑥 𝒊̂ + 𝑣2𝑦 𝒋̂ + 𝑣2𝑧𝒌̂  with 𝑣1𝑥  , 𝑣1𝑦 , 𝑣1𝑧 , 𝑣2𝑥 , 𝑣2𝑦 , 𝑣2𝑧 are 

the components of the velocity along each axis. The change in the velocity was calculated by subtracting 

the initial velocity from the final velocity for each component. On the x-axis, the formula applied is Δ𝑣𝑥 =
 𝑣2𝑥 −  𝑣1𝑥 whereas on the y-axis the formula applied is Δ𝑣𝑦 =  𝑣2𝑦 − 𝑣1𝑦, and on the z-axis is Δ𝑣𝑧 =

 𝑣2𝑧 −  𝑣1𝑧.   The acceleration of motion is the change in the total velocity divided by the total time. This 

was calculated using the following equation: 

𝑎 =  
 𝛥𝑣𝑥

 𝛥𝑡
 𝒊̂ +  

 𝛥𝑣𝑦

 𝛥𝑡
 𝒋̂ +  

𝛥𝑣𝑧

 𝛥𝑡
 𝒌̂ (4) 

We then used the data to calculate the jerk data. Jerk data is the rate of change of acceleration and can be 

calculated as the derivative of acceleration with respect to time. Analyzing jerk can provide insights into 

the smoothness or abruptness of motion transitions. We divide three metrics of jerk: a) Jerk Mean: This 
average rate of change of acceleration over time for a specific keypoint. It provides an indication of the 

average smoothness or abruptness of motion changes at that keypoint; b) Jerk Max: This represents the 

maximum rate of change of acceleration observed over time for a specific keypoint. It indicates the 

maximum abruptness or intensity of motion changes at that keypoint; c) Jerk Min: This represents the 
minimum rate of change of acceleration observed over time for a specific keypoint. This indicates that 

the minimum abruptness or intensity of motion changes at that key point. 

𝐽𝑒𝑟𝑘 𝑀𝑒𝑎𝑛 =  
1

𝑛
∑

𝑑3𝑥

𝑑𝑡3𝑖

𝑛

𝑖=1

 (5) 

𝐽𝑒𝑟𝑘 𝑀𝑖𝑛 = min(
𝑑3𝑥

𝑑𝑡31
,

𝑑3𝑥

𝑑𝑡32
, … ,

𝑑3𝑥

𝑑𝑡3𝑛
) (6) 

𝐽𝑒𝑟𝑘 𝑀𝑎𝑥 = max(
𝑑3𝑥

𝑑𝑡31
,

𝑑3𝑥

𝑑𝑡32
, … ,

𝑑3𝑥

𝑑𝑡3𝑛
) (7) 
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Where 
𝑑3𝑥

𝑑𝑡3𝑖
 is the jerk at time 𝑖, and 𝑛 is the total number of samples. These statistics help quantify how 

smoothly or abruptly a keypoint's motion changes over time. They provide insights into the dynamics of 

motion and can be useful for various applications, such as motion analysis, gesture recognition, and 

activity monitoring. 

4) Direction Calculation: Calculating movement direction is crucial, as it provides valuable information 
about the direction and orientation of movements, which can indicate specific impulsive behaviors or 

patterns. To ascertain the direction of the displacement, it is necessary to compute the displacement vector 

and confirm its direction. The displacement vector, which connects the initial position of the keypoint to 

its final position, is calculated using the following formula: 

𝐴 =  Δ𝑥𝒊̂ +  Δy𝒋̂ +  Δ𝑧𝒌̂ (8) 

The unit vectors of the x, y, and z axes are denoted by 𝒊̂, 𝒋̂, 𝒌̂. The direction of the displacement vector can 

be determined using its magnitude and dot product. To find the angle between the vector and the x-, y-, 

and z-axes, the arccosine of the dot product is divided by the vector size. 

𝜃𝑥 = cos−1
Δ𝑥

√𝑥2 + 𝑦2 +  𝑧2
 (6) 

𝜃𝑦 = cos−1
Δy

√𝑥2 + 𝑦2 + 𝑧2
 (7) 

𝜃𝑧 = cos−1
Δ𝑧

√𝑥2 + 𝑦2 + 𝑧2
 (8) 

5).   Data Analysis:  Our model was implemented by allocating the processed dataset to three segments: 60% 

for training, 20% for validation, and 20% for testing. Table 2 lists the hyperparameter configurations used 

in building the Bi-LSTM architecture and the optimal settings determined through performance evaluation 

based on the validation dataset. These hyperparameters were used to train the model with the best 
performance during the experiment.   

Table 2. Bi-LSTM Hyperparameter Configuration 

Hyperparameter Value 

Activation function Sigmoid 
Loss function Binary Crossentropy 

Optimizer ADAM 

Learning rate 0.01 
Epsilon 1.e-07 

learning rate decay 0.01 

Epochs 10, 30, 50 
Dropout 0.5 

Batch Size 64 

Nodes per Layer 100 

A confusion matrix was used to assess the performance of the algorithm by comparing its predicted and 
actual class instances. The values of true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) were determined. In our research, we employed various metrics, including Accuracy, 

Sensitivity (recall), Precision, and Area under the ROC Curve (AUC), to evaluate the algorithm. This 

metric is calculated as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 (9) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑃)
 (10) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑁)
 (11) 

 

 

3. Result and Analyses 

Our framework offers notable improvements over existing techniques for assessing and categorizing motoric 
impulsivity in a multi-person environment. To evaluate the efficacy of our approach, we employed a 

comprehensive dataset comprising videos from diverse sources such as online platforms and specially recorded 

sessions. We carefully curated this dataset to capture a broad range of impulsive movements exhibited by the 
children in various settings. By doing so, we ensured a comprehensive evaluation of the performance of our 

model. 

3.1. Movement Detection and Quantification Results 

1) Head Flexion:  Head flexion refers to the act of bending the head towards the left or right shoulder, which 
is often observed in impulsive behaviors such as fidgeting or restlessness. This movement could serve as 

a reliable indicator of motor impulsivity. To accurately measure head lateral flexion, frame-by-frame 

video analysis was performed with specific ear landmarks tracked to quantify the degree and frequency 
of the movement. Excessive or repetitive head lateral flexion can lead to a disruption in focus and interfere 

with daily activities and may even be indicative of underlying conditions such as ADHD or anxiety 

disorders. The quantified results for head flexion in the first five private videos are presented in Table 3. 

Table 3. The Movement Quantification of Head Flexion 

Video n 𝑑̅ 𝐽 𝑀𝑎𝑥 𝐽  ̅ 𝑠𝑡𝑑 

#1 2 
0.09 140.37 22.83 144.05 

0.05 139.92 24.56 148.13 

#2 2 
0.19 206.77 70.11 169.06 

0.17 105.14 15.14 109.62 

#3 4 

0.17 146.37 27.64 151.68 

0.16 143.77 35.89 162.81 

0.14 127.69 34.69 165.26 

0.09 745.90 76.70 239.07 

#4 6 

0.25 126.44 15.05 130.27 

0.15 654.04 27.91 159.46 

0.14 190.67 29.11 165.66 
0.11 182.33 32.77 186.09 

0.08 140.09 41.18 201.51 

0.10 428.93 72.36 210.80 

#5 6 

0.30 478.98 30.28 172.16 

0.18 439.27 40.81 203.38 

0.13 542.24 26.61 153.73 

0.11 205.67 20.34 122.83 

0.36 65.80 9.00 80.92 

0.19 139.01 28.54 195.33 

2) Upper Bending:  In addition to monitoring head movements, we closely observed the motion of the 

brachium (upper arm) and the antebrachium (forearm). Excessive or abnormal movements in these 

regions may indicate impulsive behaviors such as repetitive or self-stimulatory behaviors. To gauge the 
extent and range of these movements, we carefully tracked the angles of the elbow and shoulder joints 

and established neutral zero positions. Monitoring the brachium and antebrachium is crucial because 

impulsive behaviors may manifest not only in the wrist but also in a broader range of motion involving 
the entire arm. This information is critical for recognizing potential impulsive behaviors connected to arm 

movements that can hinder daily activities, social interactions, or educational settings. Table 4 presents 

the results of the quantification of the movements in the upper bending section. 
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Table 4. The Movement Quantification of Upper Bending 

video n 

Brachium L Brachium R Antebrachium L Antebrachium R 

𝑑̅ 𝐽𝑚𝑎𝑥 𝐽 ̅ 𝑠𝑡𝑑 𝑑̅ 𝐽𝑚𝑎𝑥 𝐽 ̅ 𝑠𝑡𝑑 𝑑̅ 𝐽𝑚𝑎𝑥 𝐽 ̅ 𝑠𝑡𝑑 𝑑̅ 𝐽𝑚𝑎𝑥 𝐽 ̅ 𝑠𝑡𝑑 

#1 2 
0.32 126.89 18.33 118.17 0.38 40.32 5.67 35.72 0.32 135.43 20.05 128.81 0.38 113.14 5.96 52.60 

0.01 201.66 7.93 75.63 0.11 201.12 26.31 119.95 0.04 205.81 25.62 154.31 0.41 200.81 19.25 103.93 

#2 2 

0.14 202.95 67.70 203.91 0.12 219.37 70.64 199.26 0.09 111.02 46.77 190.72 0.13 216.07 51.04 200.70 

0.32 109.12 15.46 106.81 0.35 208.78 20.97 129.65 0.27 111.07 18.19 124.36 0.39 207.53 0.77 137.21 

#3 4 

0.37 112.91 21.19 106.64 0.43 134.87 27.96 129.63 0.37 121.94 21.52 113.09 0.44 126.55 28.55 134.52 

0.39 116.55 24.89 129.45 0.40 143.58 31.60 143.55 0.38 125.96 27.99 140.29 0.41 141.40 34.30 143.39 

0.31 152.90 35.99 168.74 0.32 200.10 35.78 163.11 0.25 163.57 39.99 173.13 0.29 134.16 38.04 161.77 

0.25 795.70 72.51 217.92 0.20 196.33 48.65 170.86 0.21 732.36 76.70 237.50 0.18 211.16 47.98 182.49 

#4 6 

0.31 0 0 0 0.42 828.61 37.57 179.63 0.31 123.73 30.64 159.95 0.37 532.08 30.96 153.43 

0.40 0 0 0 0.51 853.86 38.92 179.17 0.39 380.61 32.96 159.24 0.46 139.47 35.35 172.82 

0.29 0 0 0 0.31 145.06 40.72 188.45 0.29 153.12 27.62 164.09 0.30 250.17 41.96 184.79 

0.31 149.85 26.93 158.27 0.28 222.82 33.36 180.35 0.31 153.26 35.31 173.61 0.31 241.69 36.20 186.56 

0.11 153.60 38.46 204.35 0.08 444.14 49.73 197.15 0.1080 131.46 27.17 168.27 0.07 481.17 41.11 174.83 

0.08 478.51 56.50 191.78 0.05 148.64 38.27 186.96 0.09 132.46 41.20 187.95 0.04 141.19 38.40 187.92 

#5 6 

0.43 186.15 17.51 97.00 0.54 169.36 18.32 102.29 0.45 155.20 18.62 104.21 0.53 143.64 18.58 104.47 

0.49 242.43 27.05 139.60 0.63 213.41 26.99 143.11 0.52 179.82 27.32 144.97 0.61 163.81 27.03 145.50 

0.61 170.51 20.85 111.79 0.80 200.28 21.73 114.81 0.64 171.33 21.71 115.53 0.80 190.09 21.86 115.49 

0.26 173.10 25.90 140.92 0.43 203.48 17.08 89.79 0.30 181.99 24.83 136.17 0.45 194.95 16.86 87.87 

0.44 123.35 15.67 123.95 0.57 62.41 8.06 68.45 0.43 128.36 18.34 133.96 0.56 67.68 7.58 65.70 

0.31 125.47 13.28 89.20 0.37 206.78 12.56 73.52 0.21 130.62 11.04 82.62 0.40 212.18 15.23 82.72 
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Table 5. The Movement Quantification of Lower Bending 

video n 

Thigh L Thigh R Calf L Calf R 

𝑑̅ 𝐽𝑚𝑎𝑥 𝐽 ̅ 𝑠𝑡𝑑 𝑑̅ 𝐽𝑚𝑎𝑥 𝐽 ̅ 𝑠𝑡𝑑 𝑑̅ 𝐽𝑚𝑎𝑥 𝐽 ̅ 𝑠𝑡𝑑 𝑑̅ 𝐽𝑚𝑎𝑥 𝐽 ̅ 𝑠𝑡𝑑 

#1 2 
0.56 63.59 8.52 50.24 0.58 43.14 7.07 42.77 0.64 70.28 10.21 58.81 0.66 54.83 8.42 51.87 

0.04 145.60 8.73 145.01 0.04 234.46 11.75 143.57 0.038 150.51 9.41 161.08 0.04 253.58 12.60 157.02 

#2 2 
0.31 209.19 83.07 181.74 0.27 217.48 77.97 186.63 0.23 622.32 120.48 235.87 0.15 226.62 99.27 211.27 

0.48 131.39 11.38 86.71 0.47 130.50 14.69 109.14 0.45 199.06 25.23 151.23 0.47 135.45 19.39 131.33 

#3 4 

0.61 154.02 22.65 120.09 0.62 147.24 22.24 108.03 0.63 295.49 27.02 140.99 0.66 0 0 0 

0.62 149.89 22.74 125.18 0.62 143.86 23.95 116.47 0.64 0 0 0 0.66 0 0 0 

0.46 235.54 34.73 167.26 0.47 225.22 34.39 163.12 0.44 242.88 40.28 196.24 0.46 0 0 0 

0.28 298.56 78.78 210.97 0.30 293.48 73.02 201.47 0.18 495.63 66.70 222.01 0.19 276.09 77.02 216.19 

#4 6 

0.19 145.02 22.53 146.58 0.25 147.95 33.84 178.69 0.06 148.87 20.26 144.04 0.08 147.56 23.19 155.47 

0.31 122.89 28.89 161.99 0.38 138.30 36.44 176.81 0.13 151.72 28.89 174.73 0.16 129.36 24.08 162.25 

0.27 166.82 26.93 161.80 0.28 240.84 32.19 171.04 0.16 128.77 29.33 176.80 0.16 182.15 34.93 181.28 

0.33 165.49 34.05 162.96 0.35 123.85 31.63 156.31 0.20 130.87 37.23 180.22 0.17 189.14 37.29 182.79 

0.13 143.79 31.02 172.66 0.13 146.85 33.51 177.60 0.21 148.29 41.62 205.04 0.19 148.82 38.91 200.26 

0.09 148.26 38.01 198.18 0.09 145.80 37.63 198.25 0.11 150.25 46.40 221.22 0.10 339.72 51.96 220.44 

#5 6 

0.62 142.23 17.85 101.45 0.69 149.30 19.25 108.83 0.72 142.33 16.43 93.23 0.77 177.02 19.75 
111.00 

0.67 149.48 25.90 140.00 0.75 168.32 27.96 149.25 0.77 164.40 24.12 128.27 0.84 218.49 29.26 153.67 

0.79 179.10 20.31 110.07 0.91 223.89 22.30 118.62 0.89 164.01 18.62 100.84 1.01 253.90 22.98 122.27 

0.53 160.86 16.67 89.09 0.58 225.24 16.87 89.87 0.63 140.37 16.59 90.26 0.68 254.05 16.40 86.75 

0.66 60.83 8.38 71.26 0.69 55.29 7.88 66.71 0.74 62.69 8.35 71.02 0.76 53.22 7.40 62.28 

0.39 119.14 22.99 156.95 0.41 109.86 21.34 144.97 0.47 125.93 23.32 163.34 0.48 116.12 21.67 151.58 
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3) Lower Bending:  The collective term for the movements of the thigh and calf, such as flexion and 

abduction, that occur during activities, such as walking and running, is referred to as lower bending. It is 
essential to measure these movements because they can provide valuable insights into gait patterns, 

coordination issues, and excessive movements related to impulsivity. By tracking anatomical landmarks 

and calculating joint angles over time, the range of motion and coordination of thigh, calf, and foot 
movements can be evaluated. The quantification results of lower bending movements involving the thigh 

and calf are presented in Table 5. 

 

 

Figure 4. (a) Jerk trajectory for two subjects in the video; (b) Jerk trajectory for six subjects in the video. 
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In our investigation of motion dynamics, we transformed raw data into a captivating visual narrative 

utilizing 15 videos that exhibited diverse numerical traits. As shown in Figure 4, we carefully selected two 
distinct samples for visual representation. By employing a 2D line plot, we displayed these contrasting 

individual side by side, providing a comprehensive overview of their disparate trajectories. This visual 

depiction serves as a powerful portrayal of their dual nature, accentuating the dichotomy between motor 
impulsiveness and non-impulsiveness. Delving deeper into the complexities, we examined the intricate 

relationship between acceleration changes, vividly captured by fluctuations in jerk magnitude over time. Each 

data point on the graph reveals a story of motion outlining the cadence of smooth transitions and sudden shifts. 

Through this visual journey, we uncovered the hidden layers of movement, illuminating the essence of jerk as 

a discerning metric for characterizing the nuances of motion dynamics. 

3.2. Performance 

An extensive evaluation of the proposed model was conducted using the quantitative data presented earlier 
and employing the optimal configuration detailed in Table 3. The performance of the system on the test dataset 

was prominent, achieving an accuracy of up to 95.43%. This figure shows the efficacy of the model in 

classifying the sample and determining the proportion of correct predictions in relation to the amount of 

observed data, as shown in Figure 5. 

 

 

Figure 5 Accuracy curves between training and validation for 10, 20, 30, and 50-epochs 
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The performance of our classification model is demonstrated by an AUC value of 0.96, as shown in Figure 

6. This value provides evidence that our model outperforms chance, as indicated by the dashed diagonal line 

in the curve.  

 

 

Figure 6. Precision-recall curves for training and testing during 50-epochs. 

The confusion matrix revealed that the model rarely misidentifies non-impulsive movements as impulsive, 
and effectively captures impulsive movements. This demonstrates its ability to distinguish between genuine 

impulsive and fast-regular movements. Taken together, the performance metrics, including accuracy, 

precision, recall, and F1 scores, indicate a robust, high-performance model for accurately categorizing 

instances across various classes. 

In the proposed work, significant progress was made compared with similar architectures, as shown in 

Table 6. This table effectively compares the proposed design with those presented in [31] and [32] . 

Table 6. Accuracy Comparison with Previous Study 

Reference Method Used Description of the Experiment Accuracy 

[31] 
YOLOv7, 

BoT-SORT 

combination of YOLO with ByteTrack-SORT for pedestrian 

multi-object tracking, showcasing the integration of these two 

algorithms for improved tracking accuracy. 

79.11% 

[32] 

MultiFusedNet 

(CNN, K-

Means),  Bi-

LSTM 

The experiments aimed to perform individual behavior analysis 

in situations where lighting changes are diverse and groups of 

students are intermingled. 
96.67% 

Our 

Research 

YoloV8, 

ByteTrack,  

Bi-LSTM 

Assesing motor impulsivity of multiple children in same stage 

using computer vision and deep learning. The model, 

incorporating YoloV8 and a Bi-LSTM architecture. This 
highlights the effectiveness of combining these technologies for 

precise motor impulsivity analysis, valuable for enhancing 

safety measures. 

95.43% 

 Our research encounters certain limitations that require additional exploration. One limitation is that 

accurately interpreting motor impulsivity necessitates consideration of the environmental context in which 

activity or movement takes place. Relying on predefined definitions may not offer an accurate assessment of 

observed movements in a specific context. To enhance the generalizability and robustness of our method, 
future studies should concentrate on incorporating environmental context information into the analysis 
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pipeline, such as scene understanding or situational awareness modeling. This would offer a more 

comprehensive understanding of the contextual factors that affect the observed behaviors. 

Furthermore, investigating the integration of multimodal data sources such as physiological signals or 

environmental factors could provide a more holistic understanding of motor impulsivity and its triggers. This 

may lead to personalized and effective interventions. 

 
4. Conclusion 

Our study successfully demonstrated the use of advanced computer vision and deep learning techniques to 

accurately identify and quantify motor impulsivity in complex, multi-person environments. By integrating 

state-of-the-art object detection (YOLOv8) and multi-object tracking (ByteTrack) algorithms, we developed a 
robust framework capable of reliably tracking and analyzing the movements of multiple individuals 

simultaneously. 

The incorporation of the Bi-LSTM architecture further enhanced our model's ability to capture and classify 
intricate patterns of motor impulsivity, resulting in an accuracy rate of 95.43% in distinguishing impulsive 

motor behaviors from typical movements. This performance was facilitated by the capacity of our model to 

extract and analyze a comprehensive set of kinematic features, including abrupt changes in body position, 

erratic velocity/acceleration profiles, and recurring and disruptive motion patterns. 

Our approach addresses a long-standing limitation in the field by enabling objective and precise assessments 

of motor impulsivity in naturalistic, multi-person scenarios, transcending the constraints of traditional 

subjective methodologies. These findings pave the way for transformative applications across diverse domains 
such as designing inclusive and accommodating learning environments, implementing proactive safety 

measures in recreational spaces, and fostering supportive home settings that nurture children's well-being and 

development. 

Moreover, our work heralds a paradigm shift in pediatric psychology and developmental neuroscience, 

ushering in a new era of data-driven precision interventions tailored to individual needs. By precisely 

quantifying and characterizing motor impulsivity, our approach enables the development of personalized 

therapeutic strategies and targeted interventions for related disorders such as Attention-Deficit/Hyperactivity 

Disorder (ADHD). 

While our study yielded excellent results, we acknowledge the inherent limitations of our work, including the 

relatively modest dataset size and focus on a specific age group. Future research endeavors should aim to 
expand the scope of our approach by exploring larger and more diverse datasets encompassing a wider range 

of age groups, cultural backgrounds, and neurodevelopmental conditions. Additionally, investigating the 

generalizability of our framework to other domains, such as geriatric care and sports performance analysis, 

could yield invaluable insights and applications. 

Our research not only addresses a critical need in the field but also serves as a catalyst for further innovation 

and multidisciplinary collaboration, paving the way for a future in which cutting-edge technology seamlessly 

integrates with human-centric interventions, fostering a deeper understanding of neurodiversity and promoting 

inclusive, supportive environments for individuals of all abilities. 
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