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Abstract. Population size of classical genetic algorithm is determined constantly. Its size 

remains constant over the run. For more complex problems, larger population sizes need to 

be avoided from early convergence to produce local optimum. Objective of this research is 

to evaluate population resizing i.e. dynamic population sizing  for Genetic Algorithm (GA) 

using cloning strategy. We compare performance of proposed method and traditional GA 

employed to Travelling Salesman Problem (TSP) of A280.tsp taken from TSPLIB. Result 

shown that GA with dynamic population size exceed computational time of traditional GA. 

Keyword: population size, local optimum, early convergence, Travelling Salesman Problem 

Abstrak. Ukuran populasi dari algoritma genetik klasik ditentukan secara konstan. 

Ukurannya tetap konstan selama proses berlangsung. Untuk menghadapi masalah yang 

lebih kompleks, ukuran populasi yang lebih besar perlu dihindari dari konvergensi awal 

untuk menghasilkan optimum lokal. Adapun tujuan dari penelitian ini adalah untuk 

mengevaluasi perubahan ukuran populasi, yaitu populasi dinamis Algoritma Genetika (GA) 

menggunakan strategi cloning. Kami membandingkan kinerja metode yang diusulkan 

dengan GA tradisional yang digunakan untuk Traveling Salesman Problem (TSP) dari 

A280.tsp yang diambil dari TSPLIB. Hasil menunjukkan bahwa GA dengan ukuran populasi 

dinamis mempunyai waktu komputasi yang lebih baik dari waktu komputasi yang dihasilakn 

GA tradisional 

Kata Kunci: ukuran populasi, optimum local, konvergensi awal,  
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1. Introduction 

Among several parameters of genetic algorithm, population size is an important parameter that 

can affect the performance of genetic algorithms. In a classical genetic algorithm, the population 

size is constantly fixed continuously during the evolutionary search until the maximum generation 

is achieved [1]. Figure 1 shows a population of several individuals, individuals 1 to n, for several 

generations the size of the population remains the same or constant until the maximum generation 

is achieved.  
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Figure 1. Constant population size on Genetic Algorithm 

 

The dynamic population size is the number of individuals in the population of each generation 

that can be changed by plus and minus based on the best fitness value during the evolutionary 

process lasting until the maximum generation is reached [2]. Population dynamic demonstrates 

the population’s capability in exploring and exploiting their potential habitat. Based on the 

ecological principles of natural population dynamics, dynamic populations should be more 

appropriate for evolutionary computation than fixed sized population. Fixed size population is 

strong contrast with population entities in nature. Biological populations are dynamic in both 

space and time [3]. Dynamic populations should be more appropriate for evolutionary 

computation. By testing five dynamic population sizing, which is which is random fluctuation 

population, increasing population, decreasing population, bell-shaped population and inverse 

bell-shaped population to mimic natural insect,  [2] concluded that dynamic population size is 

more efficiently than fixed sized population in term of the number of fitness function evaluation 

and memory space requirement. According to [4] population size is one of the important 

parameters that affect the performance of genetic algorithms. On complex issues, the optimal 

population size is difficult to determine. Furthermore [5] stated that problem size and complexity 

of the problem is underlying the arrangement of population size. However if population size is 

too large or too small, it will trigger general problem of GA which is too large population size 

will increase computational time and cause convergence time longer. As [6] said the larger the 

population size, the better the solution. However, their research shown, population size above 100 

chromosomes did not make better results while computing time continues to increase. On the 

other hand too small population size will result to a premature convergence and trapped to a local 

optimum [7]. Adjusting population size during a run could be more worthwhile than changing the 

operator parameters [4]. 

2. Previous Research 

Many techniques have been used in setting the size of population to get an optimal solution. 

Research related to dynamic population size have been done by [8] by introducing methods of 

addition and subtraction of population size based on changes in the best fitness values in the 
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population. The population size needs to be improved to explore the search space, while 

population size reduction is done to improve the quality of solutions in the search space. The 

addition of new population sizes is done by cloning some individuals with the best fitness value. 

The results shown that genetic algorithms with population size changes during the evolution 

process get faster computational time compare to classical genetic algorithms. 

In their research [9] reduced the size of the population adaptively. The process of evolution begins 

with a large population size then population size will continue to decrease depending on its best 

fitness value. In other words if the fitness value increases then the population size is reduced. 

Using this method, the genetic algorithm can produce better solutions and faster computational 

time then classical genetic algorithms.  

Population reduction method was employed by [10] where population size is divided into n group. 

The purpose of this study is to get the best chromosome or individual from the search space. After 

initialization, population is divided into n groups. Each group was controlled by a complete 

tournament after which the best individual of each group is selected as the new population. This 

method produced better performance and better solution than that of classical genetic algorithms. 

3. Method 

In this research data is taken from TSPLIB in the form of two-dimensional symmetrical TSP: 

A280.tsp file containing coordinates of each city. For example, data of five cities used with the 

location coordinates presented in Table 1. 

Table 1.  Coordinates of five cities on A280.tsp dataset TSPLIB 

No Coordinate X Coordinate Y 
1 288 149 

2 288 129 

3 270 133 

4 256 141 

5 256 157 

 

3.1. Euclidian Distance 

Distance between cities C calculated using Euclidean formula (1): 

 𝐶𝑖,𝑖+1 =  √(𝑥𝑖 − 𝑥𝑖+1)2 + (𝑦𝑖 − 𝑦𝑖+1)2    (1) 

Using (1), distance of five cities obtained is shown in Table 2. 
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Table 2. The distance of five cities 

C 1 2 3 4 5 

1 0 20 24,08 32,98 32,98 

2 20 0 18,44 34,18 42,52 

3 24,08 18,44 0 16,12 27,78 

4 32,98 34,18 16,12 0 16 

5 32,98 42,52 27,78 16 0 

 

3.2. Chromosome Representation and Initial Population 

The chromosome representation or encoding technique used in this research is permutations of 

the sequence of genes. Each city is represented by integer number and the sequence of genes in 

the chromosomal represent order of cities/routes to be traversed to get fitness value. 

Initialization of the population is an integer number generated randomly in [1, n], where n is the 

length of the chromosome. For example, the initial population formation process given population 

size is 8 individuals shown in Table 3. 

Table 3. Initial Population 

Individual Chromosome 
Distance = 

Objective Function 

1 1   2   3   4   5 103,548 

2 1   3   2   4   5 125,683 

3 2   5   4   1   3 134,028 

4 4   1   5   3   2 146,370 

5 4   2   5   1   3 149,889 

6 2   5   3   4   1 139,415 

7 5   3   2   1   4 115,209 

8 3   1   5   2   4 149,889 

 

3.3. Evaluation of Fitness value 

Fitness value of each individual is calculated using (2). 

 

                             𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  
1

𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
                                     (2) 

Fitness of individuals is shown in Table 4 
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Table 4. Fitness value of each individu 

Individual Chromosome Total Distance Fitness 

1 1   2   3   4   5 103,548 
1

103,548
= 0,0097 

2 1   3   2   4   5 125,683 
1

125,683
= 0,0080 

3 2   5   4   1   3 134,028 
1

134,028
= 0,0075 

4 4   1   5   3   2 146,370 
1

146,370
= 0,0068 

5 4   2   5   1   3 149,889 
1

149,889
= 0,0067 

6 2   5   3   4   1 139,415 
1

139,415
= 0,0072 

7 5   3   2   1   4 115,209 
1

115,209
= 0,0087 

8 3   1   5   2   4 149,889 
1

149,889
= 0,0067 

 

3.4.  Selection 

The selection process in this research is done by using roulette wheel selection method. We first 

calculate total fitness 𝐹𝑖𝑡𝑡𝑜𝑡  of all individual,  

𝐹𝑖𝑡𝑡𝑜𝑡 = ∑ 𝐹𝑘                                                               (3) 

where 𝐹𝑘 is individual fitness 

𝐹𝑖𝑡𝑡𝑜𝑡 = 0,0097 + 0,0080 + 0,0075 + 0,0068 + 0,0067 + 0,0072 + 0,0087 + 0,0067 

                   = 0,0611 

Afterward, relative fitness 𝑃𝑘   of each individual is calculated using (4) to select individual for 

crossover (see Table 5) 

 

 𝑃𝑘 =
𝐹𝑘

𝐹𝑖𝑡𝑡𝑜𝑡
                                  (4) 

 

Table 5. Relative fitness of individuals 

Individual Relative Fitness (Pk) Individual Relative Fitness (Pk) 

1 
0,0097

0,0611
= 0,1580 5 

0,0067

0,0611
= 0,1092 

2 
0,0080

0,0611
= 0,1302 6 

0,0072

0,0611
= 0,1174 

Continued on next page 
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Table 5. Continued from previous page 

Individual Relative Fitness (Pk) Individual Relative Fitness (Pk) 

3 
0,0075

0,0611
= 0,1221 7 

0,0087

0,0611
= 0,1421 

4 
0,0068

0,0611
= 0,1118 8 

0,0067

0,0611
= 0,1092 

 

3.5. Crossover 

The crossover process is done using the partially mapped crossover (PMX) method by taking 2 

randomly cut points on each individual. 

3.6. Mutation 

The method of mutation used is to exchange one or more gene values in chromosomes randomly. 

The value of a mutated gene in one population is determined by probability mutation (Pm) 

3.7.  Dynamic Population 

After the mutation process, the individuals generated are evaluated to see the best fitness value. 

The size of the population will increase or decrease depending on the change in the best fitness 

value. If the best fitness value increases then the population size will be increased. If the best 

fitness value remains the same for T generation, the population size will increase. When the best 

fitness value decreases, the population size will be reduced. 

Addition of population size is done by cloning some individuals with good fitness and by 

randomly generating a number of new individuals. Meanwhile, reduction of population size is 

done by eliminating individuals with poor fitness. Overall process of adaptive population is as 

follow: 

a. Calculate individual fitness after mutation process (see Table 6). 

Table 6. Individual’s fitness value after mutation 

Individual Genes Total Distance Fitness 

1 1   5   2   4   3 149,889 0,0067 

2 1   5   3   4   2 131,070 0,0076 

3 2   5   3   4   1 139,415 0,0072 

4 2   5   4   1   3 134,028 0,0075 

5 1   3   2   4   5 125,683 0,0080 

6 2   1   5   3   4 131,070 0,0076 

7 3   2   1   4   5 115,209 0,0087 

8 5   3   2   1   4 115,209 0,0087 
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The current best fitness value after the mutation process undergoes a change. In the initial 

population the best fitness value is 0.0097, after the mutation, the best fitness value decreases to 

0.0087. Since the best fitness value is decreased then the population size is reduced using the 

following equation (5). 

     𝑃𝑜𝑝𝑁 = 𝑃𝑜𝑝𝑂 ∗ (1 − 𝐹𝑑𝑒𝑐)      (5) 

                𝑃𝑜𝑝𝑁 = 8 ∗ (1 − 0,4) = 4,8 ≈ 5 

where 𝐹𝑑𝑒𝑐 is decreasing factor in [0,1] interval 

By eliminating individuals with smaller fitness values the size of the population in new generation 

is five individuals, as shown in Table 7. 

Table 7. Individuals in new generation 

Individual Genes Total Distance Fitness 

1 1   5   3   4   2 131,070 0,0076 

2 1   3   2   4   5 125,683 0,0080 

3 2   1   5   3   4 131,070 0,0076 

4 3   2   1   4   5 115,209 0,0087 

5 5   3   2   1   4 115,209 0,0087 

 

After eliminating individual with smaller fitness value (on previous population), recalculate the 

fitness value of the new individual on new generation (see Table 8). 

Table 8. Fitness value of individual on new generation 

Individual Genes Total Distance Fitness 

1 5   3   4   1   2 139,415 0,0072 

2 3   5   2   4   1 161,550 0,0062 

3 4   1   2   3   5 115,209 0,0087 

4 4   1   5   3   2 146,370 0,0068 

5 5   1   2   3   4 103,548 0,0097 
 

 

As shown on Table 7, the best fitness value obtained was 0.0087. After recalculating the fitness 

value of five individuals, the best fitness value increased to 0.0097. Since the best fitness value is 

increased, the population size will be cloned [11] using equation (6). 

 

𝑃𝑜𝑝𝑁 = 𝑃𝑜𝑝𝑂 + (𝑃𝑜𝑝𝑂 ∗ (𝐹𝑖𝑛𝑐 ∗ (𝐺𝑚𝑎𝑥 − 𝐺𝑐𝑢𝑟) ∗ (
𝐹𝑚𝑎𝑥𝑁−𝐹𝑚𝑎𝑥𝑂

𝐹𝑚𝑎𝑥𝑖𝑛𝑖𝑡
)))    (6)  

𝑃𝑜𝑝𝑁 = 5 + (5 ∗ (0,1 ∗ (20 − 2) ∗ (
0,0097−0,0087

0,0097
))) = 5,9 ≈ 6                              
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where 

𝑃𝑜𝑝𝑁  : new population size  

𝑃𝑜𝑝𝑂             : previous population size  

𝐹𝑖𝑛𝑐             : increasing factor in [0,1] interval 

𝐺𝑚𝑎𝑥  : maximum number of generation 

𝐺𝑐𝑢𝑟  : current generation 

𝐹𝑚𝑎𝑥𝑁  : the best fitness value of current generation 

𝐹𝑚𝑎𝑥𝑂  : the best fitness value of previous generation 

𝐹𝑚𝑎𝑥𝑖𝑛𝑖𝑡 : the best fitness value of initial population 

Using (6) the population size of the new generation is 6 individuals. The new generation has the 

addition of 1 individual from the previous 5 individuals shown in Table 9. 

 
Table 9. Population size to the new generation 

Individual Genes Total Distance Fitness 

1 5   3   4   1   2 139,415 0,0072 

2 3   5   2   4   1 161,550 0,0062 

3 4   1   2   3   5 115,209 0,0087 

4 4   1   5   3   2 146,370 0,0068 

5 5   1   2   3   4 103,548 0,0097 

6 1   3   5   2   4 161,550 0,0062 

b. A whole process (selection-crossover-mutation-update population size) will be repeated until 

stopping criterion is met. 

3.8.  Stopping Criterion 

The stopping criterion in this research is maximum number of generation which is determined by 

user. 

4. Result and Discussion 

In this section we will analyze genetic algorithm with constant population size and dynamic 

population size to solve Travelling Salesman Problem (TSP). Data set used is a280.tsp taken from 

TSPLIB.  

4.1. TSP solution using Genetic Algorithm with constant population size  

Testing done to solve Traveling Salesman Problem (TSP) problem with test data file a280.tsp 

with parameter setting as follow:  
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Population size = 100, 200, and 500 

Maximum generation = 200, 500, and 1000 

Probability of crossover (Pc) = 0.6 

Probability of mutation (Pm) = 0.001 

Testing performed using the population size of 100, 200 and 500 individuals, with the maximum 

generation of 200, 500 and 1000 generations, the probability of crossover (Pc) 0.6 and the 

mutation probability (Pm) 0.001 is used constantly during the iteration. Testing is done 5 times. 

Result obtained shown in Table 10, 11 and 12 respectively.  

Table 10. Testing on 100 individuals and 200, 500 and 1000 generation GA with constant 

population size 

Testing 

The best fitness Computational time (ms) 

200 

generation 

500 

generation 

1000 

generation 

200 

generation 

500 

generation 

1000 

generation 

1 0.3446 0.3355 0.3376 920 11263 22371 

2 0.3545 0.3340 0.3340 1202 11263 22339 

3 0.3318 0.3342 0.3342 1030 11247 22418 

4 0.3346 0.3319 0.3369 936 11295 22371 

5 0.3455 0.3326 0.3471 1139 11310 22371 

Mean 0.3422 0.3336 0.3380 1045,4 11275.6 22374 

Table 11. Testing on 200 individuals and 200, 500 and 1000 generation GA with constant 

population size 

Testing 

The best fitness Computational time (ms) 

200 

generation 

500 

generation 

1000 

generation 

200 

generation 

500 

generation 

1000 

generation 

1 0.3370 0.3333 0.3354 9063 22449 44757 

2 0.3340 0.3337 0.3339 9064 22464 44788 

3 0.3357 0.3357 0.3381 9111 22495 44819 

4 0.3355 0.3357 0.3401 9141 22480 44819 

5 0.3361 0.3369 0.3380 9157 22464 44757 

Mean 0.3357 0.3351 0.3321 9107.2 22470.4 44788 

 

 

 

 



Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 2, 2018                                                          96 

Table 12. Testing on 500 individuals and 200, 500 and 1000 generation GA with constant 

population size 

Testing 

The best fitness Computational time (ms) 

200 

generation 

500 

generation 

1000 

generation 

200 

generation 

500 

generation 

1000 

generation 

1 0.3390 0.3401 0.3383 22807 56285 112259 

2 0.3339 0.3380 0.3380 22745 56316 112508 

3 0.3349 0.3413 0.3381 22838 57720 112243 

4 0.3350 0.3363 0.3414 22776 56207 112367 

5 0.3338 0.3383 0.3406 24461 56207 112274 

Mean 0.3353 0.3388 0.3393 23125.4 56547 112330.2 

 

After we test the problem with constant population size, we then test the dynamic population size 

with the same parameters as we used in constant population.  

 

4.2. TSP solution using Genetic Algorithm with dynamic population size 

We then test the algorithm to a280.tsp with dynamic population size. The parameter used is same 

as parameter value in genetic algorithm with constant population with additional parameter values 

as follows: 

 
Population Size = 100, 200, and 500 

Maximum  Population Size    = 100, 200, and 500 

Minimum Population Size      = 10 

Maximum Generation    = 200, 500, and1000 

Probablity crossover (Pc)    = 0.6 

Probability mutation (Pm)   = 0.001 

Increasing Factor   = 0.1 

Decreasing Factor   = 0.4 

 
Testing performed by using the population size of 100, 200 and 500 individuals, with the 

maximum generation of 200, 500 and 1000 generations, the probability of crossover (Pc) 0.6 and 

the mutation probability (Pm) 0.001 is used constantly during the iteration. Testing is done 5 

times. Result obtained shown in Table 13, 14 and 15 respectively.  
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Table 13. Testing on 100 individuals and 200, 500 and 1000 generation GA with dynamic 

population size 

Testing 

The best fitness Computational time (ms) 

200 

generation 

500 

generation 

1000 

generation 

200 

generation 

500 

generation 

1000 

generation 

1 0.3446 0.4082 0.5222 920 5242 11326 

2 0.3545 0.4237 0.4750 1202 5616 11216 

3 0.3318 0.4172 0.4877 1030 5398 11669 

4 0.3346 0.4136 0.5146 936 5803 11684 

5 0.3455 0.4132 0.4983 1139 5148 11622 

Mean 0.3422 0.4152 0.4996 1045,4 5441.4 11503.4 

  

Table 14. Testing on 200 individuals and 200, 500 and 1000 generation GA with dynamic 

population size 

Testing 

The best fitness Computational time (ms) 

200 

generation 

500 

generation 

1000 

generation 

200 

generation 

500 

generation 

1000 

generation 

1 0.3490 0.4366 0.5704 1997 9298 21513 

2 0.3595 0.4488 0.5410 2215 9766 21403 

3 0.3470 0.4270 0.5274 2138 9875 21763 

4 0.3630 0.4489 0.5399 1903 9282 21497 

5 0.3448 0.4619 0.5509 1701 9672 20498 

Mean 0.3527 0.4446 0.5459 1990.8 9578.6 21334.8 

  

Table 15. Testing on 500 individuals and 200, 500 and 1000 generation GA with dynamic 

population size 

Testing 

The best fitness Computational time (ms) 

200 

generation 

500 

generation 

1000 

generation 

200 

generation 

500 

generation 

1000 

generation 

1 0.3570 0.4856 0.5508 3416 21606 49811 

2 0.3618 0.4813 0.5689 5522 21107 48361 

3 0.3995 0.4722 0.5560 6568 20857 47861 

4 0.3581 0.4870 0.5701 3900 15007 45662 

5 0.3576 0.4593 0.6016 4612 15990 50779 

Mean 0.3668 0.4771 0.5695 4803.6 18913 48494.8 

 

Comparison of average results obtained of the best fitness value and average computational time 

of the constant population size and dynamic population size of genetic algorithm illustrated in 

Figure 1 and Figure 2. 
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Based on Figure 1 and Figure 2, average of the best fitness value and average of computational 

time obtained by dynamic population exceeds than that of constant population.  Method of 

determining the population size is done by increasing or decreasing the population size 

dynamically based on the best fitness value. If the best fitness value increases then the population 

size increases, in the contrary if the best fitness value is reduced then the population size is 

reduced. 

Figure 1 Average of best fitness value by constant population and dynamic population 

Figure 2 Average of computational time by constant population and dynamic population 
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5. Conclusion and Future Research 

Population size is one of the important parameters that affect the performance of genetic 

algorithms. Population size can affect the diversity of the population. Generally in classical 

genetic algorithms, population size is constantly regulated throughout the evolutionary process. 

On complex issues, optimal population size is difficult to determine. Population size changes can 

be made by increasing and decreasing the size of the population during the evolutionary process 

is underway based on the change in the best fitness value. The addition of population size is done 

by cloning some individuals with the best fitness. By using dynamic population size is the number 

of individuals in the population of each generation that can be altered by adding and subtracting 

the best fitness value during the evolutionary process until the maximum generation is achieved. 

Based on the results obtained it is proven that genetic algorithm with dynamic population size can 

get better results than that of obtained by the population with constant size. Dynamic population 

size can increase the best average fitness value rather than a constant population size. The larger 

the population size, the better the solution obtained as evidenced by the increase in the average 

value of the best fitness.  
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