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Abstract. In Malaysia, driver inattention and drowsiness becomes one of the causes of road 

accidents which sometime could lead to fatal ones. From the data provided by Malaysian 

Police Force, Polis Di Raja Malaysia or PDRM in 2016, deaths from road accidents increased 

from 6,706 in 2015 to 7,512 in 2016. Some accidents were caused by human factor such as 

driver's inattention and drowsiness. This problem motivates many parties to look for better 

solution in dealing with this human factor. Some of the car manufacturers have introduced to 

their certain models of car with an assistant system to oversee driver’s condition.  The 

assistant system is in fact part of the main safety system known as Advanced Driver 

Assistance Systems (ADAS).  The kind of system has been developed to strengthen vehicle 

systems for safety and conducive driving. The system has been contemplated to congregate 

accurate input, rapid processing data, precisely predict context, and respond in real time. In 

addition to that, suitable method is also needed to detect and classify driver drowsiness and 

inattention using computer vision as the latter become more and more important in any 

intelligent system development. In this paper, the proposed system introduces a method to 

classify drowsiness into three different classes of eye state; open, semi close and close. The 

classification has been done by using feature extraction method, percentage of eye closure 

(PERCLOS) technique and Support Vector Machine (SVM) classifier. The performances of 

the methods have been then measured and represented by using confusion matrix and ROC 

performance graph. The results have show that the proposed system has been able to achieve 

high performance of distraction and drowsiness detection according to driver's eye closeness 

level. 
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1.  Introduction  

Human factor is one of the main factors that contribute to the high rate of road accidents. Being 

human, feeling abnormally sleepy or fatigue during the day may lead to additional symptoms, 

such as forgetfulness or falling asleep at inadmissible times [1] and unreasonable situation [2]. 

Corresponding to recent provisional data provided by Polis Di Raja Malaysia (2016), deaths from 
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road accidents in 2015 is 6,706 compared to 2016 is 7,512, which is the highest number of deaths 

recorded over previous years [3]. Drowsiness might be caused due to fatigue, lack of sleep, 

medication consuming, or routine related with vehicle driving [4]. It leads to a vital recession in 

driver’s abilities of perception and vehicle control. Therefore this will threaten safe driving and 

will increase the possibility of road accidents which sometime may be fatal. 

2. Methodology 

Figure 1 shows the models of this research fundamentally started with the acquisition of the input 

images from two conditions of the images which are the images with glasses and without glasses.  

The process continues to interest point detection, feature extraction, vector quantization and lastly 

histogram of features frequencies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Work flow of this research 

Three distinct classes of eye state images used to figure out driver inattention and drowsiness. 

Referring to Figure 3.2, the eye state is delineated according to the eye closeness degree which 

are open (a), semi close (b) and close (c). Both classes of semi close and close are considered as 

distraction or drowsiness. A set of M training images owned by each class are used to build the 

classifier. From all input images, 50% of them were assigned as the training images for each class 

while another 50% were used as testing images. The classifier contains the number of classes and 



Journal of Computing and Applied Informatics (JoCAI) Vol. 04, No. 1, 2020 18 

the class labels (open, semi close and close) for the input images. The training of each class of 

image have been done using a learning model technique of Support Vector Machine (SVM), 

which is a multi-class classifier. 

The grid method is used to select feature point and Speeded-Up Robust Feature (SURF) is used 

to extract features which have been selected. Within this step, feature vectors for each image from 

the training set are extracted with BlockWidth size [32, 64, 96, 128] pixels. Features are extracted 

from the images and the approximate nearest neighbour algorithm is used to construct features 

histogram for each class image. Visual vocabulary is built in form of feature vectors from 

representative images of each class. Visual vocabulary is defined by a group of selected feature 

vectors after using k-means clustering algorithm on the feature descriptors into k mutually 

exclusive clusters. For experimental setup, it is very important to determine the optimal cluster 

size, k so that the accuracy of classification is optimal. The range of suitable k is prescribed based 

on the baseline which is number of classes/categories[5]. Table 1 shows comparison of number 

of classes/categories and the cluster size used.  The range of classes/categories is between 2 to 13 

are using the k values starting from 160 to 1500. In this experiment, we use the value of k starting 

from 100 to 700 for 3 classes to determine the optimal accuracy.  

The algorithm function trains a Support Vector Machine (SVM) multiclass classifier. Then, 

feature vectors for the images are represented by the histogram. Selected feature vectors are tested 

and evaluated using testing set image. Then, the clusters are compressed and grouped by similar 

characteristics and each cluster centre represents a potent feature vectors. Lastly, the image 

category classifier is used to predict the query images and determine its category according to 

class labels. The confusion matrix is used to portray the prediction. A perfect classification results 

in a normalized matrix containing 1s on the diagonal and an imperfect classification results in 

fractional value. 

Table 1. Comparison of number of classes/categories and the cluster size, k 

Previous work 
Number of 

classes/categories 
Cluster size, k 

Luo et al.[6] 5/2 500 

Lu and Ip [7] 3 100/200 

Chen et al.[8] 8 1000 

Bosch et al.[9] 6 700 

Junsong et al.[10] 2 160/500 

Monay et al.[11] 4 1000 

Bosch et al.[12] 6/8/13 1500 
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3. Results and Discussion 

We present the pre-experiment results or experimental setup for this research. Error! Reference 

source not found. shows the average accuracy with several values of cluster size, k. So, the optimal 

cluster size setting, k = 500 is chose according to the best value of accuracy which is 90%. 

 
 

 

 

 

 

 

Figure 2. The best cluster size for three classes 

The optimal value of k is needed to avoid poor result, possibly to the point of becoming unusable 

[13] Figure 3 shows the example of images of training set of the experiment A (Experiment A1: 

((a), (b), (c)) and second experiment (Experiment A2: (d), (e), (f)). 500 feature vectors extracted 

for classifier model known as visual words.500 feature vectors establishing the visual words with 

the visual vocabulary size of 500 words considering all the three classes (open, semi close and 

close) which is visualize as visual word index. 

   

(a)  (b) (c) 

   

             (d)              (e)             (f) 

Figure 3. Examples of training /testing  

Figure 6 shows the feature histogram of the classes of eye state. From the histogram, they just 

look similar to each other. However, each eye state has different histogram distribution. The 
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frequency pattern distribution for open state, Figure 4(a) is obviously concentrated in the middle 

to the third quarter of the histogram specifically at visual word index from 250 to 500. Besides, 

for half close state in Figure 4 (b), the frequency pattern distribution hoarded in the first and third 

quarter the histogram which is between visual word index 0 to 170 and 330 to 500. For close state 

in Figure 4 (c), the frequency pattern distribution concentrated in first and third quarter of the 

histogram which is between visual word index 0 to 200 and 270 to 500.  

Little bit different for not wearing glasses eye state in Figure 4 (d) – (f). The frequency pattern 

distribution for open state in Figure 4 (d) is obviously concentrated in the first to the middle 

quarter of the histogram specifically at visual word index from 0 to 270. Besides, for half close 

state in Figure 4 (e), the frequency pattern distribution hoarded in the first and third quarter the 

histogram which is between visual word index 0 to 170 and 330 to 500. For close state in Figure 

4 (f), the frequency pattern hoarded from the first to the middle of the histogram which from 

visual word index 0 to 320. Overall, the frequency distribution pattern for both learning model 

(training and testing) is almost the same except for open state (Figure 4 (a) and Figure 4 (d)) and 

close state (Figure 4 (c) and Error! Reference source not found.(f)) which are the frequency 

distribution are in different quarter of the histogram. 

   

(a) (b) (c) 
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(d) (e) (f) 

Figure 4. Eye state histogram for wearing glasses 
 
The normalized confusion matrices shown in Table 1(a) and (b) summarize the comparison of 

eye state classification for the different learning model. A row represents a case of the actual class, 

while a column represents a case of the predicted class. Consequently, the degree of accuracy 

predicted classes is represented by the values of the diagonal elements. The ‘confusion’ is 

expressed by the false classified off-diagonal elements, since they are mistakenly labelled with 

another class by classifier.  An interesting observation is that this method shows an impressive 

classification result between close and open state. Results show that proposed method for eye 

state classification can differentiate open and close state very well according to the confusion 

matrices.  

In the experiment, the classifier is tested and represented with confusion matrix for all query 
images in Figure 5. The normalize confusion matrices for Experiment A are shown in  

Table 2 –  
Table 7 for each query image. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 5. Types of query images 

 

Table 2. Query image (a) 

    Predicted 

    Close Semiclose Open 

Actual Close 1 0 0 

 Semiclose 0 1 0 

  Open 0 0 1 

 

Table 3. Query image (b) 

    Predicted   

    Close Semiclose Open 

Actual Close 1 0 0 

 Semiclose 0 1 0 

  Open 0 0 1 

 

Table 4. Query image (c) 

    Predicted 

    Close Semiclose Open 

Actual Close 1 0 0 

 Semiclose 0 1 0 

  Open 0.074074 0 0.925926 
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Table 5. Query image (d) 

    Predicted 

    Close Semiclose Open 

Actual Close 1 0 0 

 Semiclose 0 1 0 

  Open 0.090909 0 0.909091 

 

Table 6. Query image (e) 

    Predicted 

    Close Semiclose Open 

Actual Close 0.909091 0.090909 0 

 Semiclose 0 1 0 

  Open 0 0 1 

 

Table 7. Query image (f) 

    Predicted 

    Close Semiclose Open 

Actual Close 0.9375 0.0625 0 

 Semiclose 0 1 0 

  Open 0 0 1 

 

The diagonal elements represent the number of points for which the predicted label is equal to the 

actual label range between 0 and 1, whereas off-diagonal elements are those that are mislabelled 

by the classifier. The higher the diagonal values of the confusion matrix, the better indicating 

many correct predictions. By referring to Table 2 – Table 7, the conclusions can be made as 

follows: 

a. There are no misclassified for all classes for Table 2 and Table 3. 

b. There is 7.4% of misclassified Open as Close for Table 4. 

c. There is 9.0% of misclassified Open as Close for Table 5. 

d. There is 9.0% of misclassified Close as Semiclose for Table 6. 

e. There is 6.3% of misclassified Close as Semiclose for Table 7. 

The ROC curve shows the trade-off between specificity (1 – false positive rate (FPR)) and 

sensitivity or true positive rate (TPR). Classifiers that give curves nearer to the top-left corner 

shows a better performance. The closer the curve comes to the 45-degree of the ROC space, the 

more accurate the test. Besides, one of the most important evaluation methods for checking any 

classification model’s performance is area under curve (AUC).  

ROC is a probability curve and AUC represents the degree or measure of features distinction or 

separability. It tells how much model is capable of distinguishing between classes. Higher the 
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AUC, better the model is at predicting 0s as 0s and 1s as 1s. By analogy, higher the AUC, better 

the model is at distinguishing between eye’s states. In Figure 6(a), when distributions of two 

features overlap between semiclose and close, it means there is 64.06% chance that model will be 

able to distinguish. 

 

AUC =  0.6406 or 64.06% 

 

(a) 

 

AUC =  1 or 100% 

 

(b) 

 

AUC =  0.8413 or 84.13% 

 

(c) 
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Figure 6. ROC results 

between semiclose and close. However, in Figure 6(b), two curves do not overlap at all means 

model has an ideal measure of distinction and it is perfectly able to distinguish between open and 

close. Lastly, in Figure 6(c) distributions of two features overlap between half close and open, it 

means there is 84.13% chance of the model will be able to distinguish 

4. Conclusion 

The non-invasive method based on computer vison is applied to detect and classify driver 

drowsiness and inattention according to their classes.  Large number of previous works comprised 

with one type of eye condition which is without glasses. Differently, in this work, all experiments 

have taken consideration of two eye conditions of eye with glasses and eye without glasses. The 

results of the experiments have shown that by using only one type of eye condition data training, 

the proposed system has been able to classify two types of eye condition according to three classes 

of eye states. The classification performances by using area under curve of ROC (AUROC) 

between open and semiclose has acheived more than 80%. This indicates good performance of 

detection classification of eye distraction and drowsiness. This is important because semiclose 

and close eye state classes are considered as distraction or drowsiness. It can be concluded that 

the proposed technique has been able to detect and classify distraction or drowsiness of a subject 

based on his or her eye state with very high accuracy and fast. However, the study was limited to 

controlled environment such as non-volatile illumination variation and very minimum movement 

by the subjects. Further research and study will be conducted using the proposed technique in the 

condition which is similar to real driving environment. 
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