
Journal of Computing and Applied Informatics (JoCAI) Vol. 5, No. 2, 2021 | 85 - 101 

 

DATA SCIENCE  
Journal of Computing and Applied Informatics 

 
 

 
*Corresponding author at: 11868 College Backbone Road, 1102 Trigg Hall, Department of Agriculture, Food and 

Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA 
 
E-mail address: ychi@umes.edu 

 
Copyright © 2021 Published by Talenta Publisher 
ISSN: 2580-6769 | e-ISSN: 2580-829X | https://doi.org/10.32734/jocai.v5.i2-5674 
Journal Homepage: https://jocai.usu.ac.id 

Time Series Forecasting of Global Price of Soybeans 
Using a Hybrid SARIMA and NARNN Model 

Yeong Nain Chi  
Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, MD, 
USA 
 

 

Abstract. The primary purpose of this study was to demonstrate the role of time series 
models in predicting process applying advanced techniques using the time series data of 
monthly global price of soybeans from January 1990 to January 2021. The univariate 
SARIMA, NARNN-LM and Hybrid-LM models were compared with mixed conclusion in 
terms of the superiority in forecasting performance for the target time series. The mean square 
error (MSE) was used to compare the forecasting performance among the three models. The 
comparative results revealed that the Hybrid-LM model with 8 neurons in the hidden layer 
and 3 time delays (MSE = 186.43259) yielded higher accuracy than the NARNN-LM model 
with 8 neurons in the hidden layer and 3 time delays (MSE = 222.42221), and the SARIMA, 
ARIMA(0,1,3)(0,0,2)12, model (MSE = 284.966473) in this study. The results of this study 
showed that the Hybrid-LM model, a combination of SARIMA and NARNN models, has 
both linear and nonlinear modelling capabilities which can be a better choice for modelling 
the target time series. This study could provide an integrated modelling approach as a 
decision-making supportive method for formulating price forecast of soybeans for the global 
soybean market. 
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1 Introduction 

Globally, there is a huge demand for soybeans, that are used widely in livestock feed, food, fuel 

and industrial products. China imported approximately 93.5 metric tons of soybeans in 2016, 

which accounted for 65% of the world total soybean imports [1]. China is the world's largest 

importer of soybeans, while the U.S. and Brazil account for about 80% of global exports of 

soybeans [2]. According to Trading Economics, the U.S., Brazil, Argentina and Paraguay are the 

biggest producers and exporters of soybeans in the world, concentrating more than 80% of total 

production and 90% of total exports. China is the biggest importer of soybeans (60% of total 
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imports) followed by the European Union, Mexico, Japan and Taiwan. 

(https://tradingeconomics.com/commodity/soybeans), 

Due to the availability of vast agricultural land, the U.S. has managed to become the highest 

producer of soybeans globally with over 117 million tons of grain being harvested as of 2016. 

The growth of soybean production in the U.S. is attributed to shifting land from crops such as 

wheat and corn to soybeans. In 2018-19, soybean harvest was recorded at 35.6 million hectares, 

despite the increase of Chinese tariffs against U.S. soybeans [2]. However, despite strong market 

potential, soybeans remain a marginally attractive commercial crop due to a high cost base, poor 

transport infrastructure and uncertain trade policies. It is also still not very attractive crop for 

smallholders and small enterprises as they lack appropriate inputs, expertise and a sure market. 

Recently, the increase in tariffs for soybeans has presented unique challenges for the U.S. and 

China with both markets seeing significant challenges and risks. Thus, China gradually increased 

its imports of soybeans from Brazil and Argentina, in a bid to counter the tariff imposed by the 

U.S. In the long-term, the negative impact of the U.S.-China trade war on the U.S. soybean 

industry will be mitigated by the increasing demand for U.S. soybeans of other importing 

countries. However, if trade agreements cannot be reached between the U.S. and China, the 

soybean industry will continue to face a very difficult time in the future. 

However, price forecast is vital to facilitate efficient decisions and will play a major role in 

coordinating the supply and demand of soybeans globally. Not only in terms of demand and 

supply framework, but also associated with imports and exports competition of soybeans in the 

global soybeans market, price forecast still plays an important role for the future trends of 

soybeans consumption and production in the world. Time series forecasting is the use of 

a model to predict future values based on previously observed values. Furthermore, neural 

network models have become one of the most popular trends for time series modeling and 

forecasting.  

Autoregressive Integrated Moving Average (ARIMA) is one of the most popular linear models in 

time series forecasting. Neural network models could be a potential alternative to the traditional 

linear time series models.  Recently, many studies have integrated time series analysis and neural 

network framework together, a combination of Seasonal Autoregressive Integrated Moving 

Average (SARIMA) and Nonlinear Autoregressive Neural Network (NARNN) model, in medical 

sciences [3] [4] [5] [6], business [7], tourism [8]. From these studies reported, this hybrid model 

can explore the reliable model to forecast the time series for a better performance. Specifically, it 

can take advantage of the unique strength of SARIMA and NARNN models in linear and 

nonlinear modeling, and can be an effective way to improve forecasting accuracy achieved by 

either of the models used separately. Thus, the primary purpose of this study was to demonstrate 
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the role of time series models in predicting process applying advanced techniques using the time 

series data of monthly global price of soybeans from January 1990 to January 2021. 

2 Materials 

The long-term records of monthly global price of soybeans (units:  U.S. dollars per metric ton, not 

seasonally adjusted) from January 1990 to January 2021 (Figure 1), is available to the public from 

International Monetary Fund, Global Price of Soybeans [PSOYBUSDM], retrieved from FRED, 

Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/PSOYBUSDM. Average 

monthly global price of soybeans from January 1990 to January 2021 was $303.37 U.S. dollars 

per metric ton with the standard deviation of $109.73 (Minimum: $158.31, Maximum: $622.91, 

and Median: $278.04). 

Figure 1. Time Series Plot of Monthly Global Price of Soybeans, January 1990 ~ January 2021 

(Source: own work) 

3 Methods 

3.1 Seasonal ARIMA (SARIMA) Model 

A time series is a set of observations, each one being recorded at a specific time t. The sequence 

of random variables {yt: t = 1, 2, ⋯, T} is called a stochastic process and serves as a model for an 

observed time series. For the Autoregressive Integrated Moving Average (ARIMA) model, the 

ARIMA(p, d, q) model can be expressed as: 

yt = ϕ1yt-1 + ϕ2yt-2 + ⋯ + ϕpyt-p + et + θ1et-1 + θ2et-2 + ⋯ + θqet-q  

    = ∑i=1 p ϕiyt-i - ∑j=1 q θjet-j + et       (1) 

where p = the order of the autoregressive process (the number of lagged terms), d = the number 

of differences required to make the time series stationary, q = the order of the moving average 

process (the number of lagged terms), ϕ = (ϕ1, ϕ2, ⋯, ϕp) is the vector of model coefficients for 
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the autoregressive process, θ = (θ 1, θ 2, ⋯, θq) is the vector of model coefficients for the moving 

average process, and et is the residual error (i.e., white noise) [9]. The purpose of each of these 

parts is to make the model better fit to predict future points in a time series [9]. 

The SARIMA model is an extension of the ARIMA model that explicitly supports univariate time 

series with a seasonal component. Statistically, ARIMA(p, d, q)(P, D, Q)S is used to represent the 

SARIMA model, where P = the order of the seasonal autoregressive process, D = the number of 

seasonal differences applied to the time series, Q = the order of the seasonal moving average 

process, and S = the seasonality of the model, i.e., the number of time steps for a single seasonal 

period.  

In time series analysis, the Box-Jenkins methodology [10] refers to a systematic method of 

identifying, estimating, checking, and forecasting ARIMA models [11], that can be applied to 

find the best fit of a time series. The Box-Jenkins methodology also can be used as the process 

for estimating the SARIMA model in this study based on its autocorrelation function (ACF) and 

partial autocorrelation function (PACF) as a means of determining the stationarity of the 

univariate time series and the lag lengths of the SARIMA model.  

In order to figure out good parameters for the model, Akaike’s Information Criterion (AIC) or 

Bayesian Information Criterion (BIC) can be used to determine the orders of a SARIMA model 

that is obtained by minimizing the AIC or BIC value. In this study, R 4.0.2 for Windows, an 

open source for statistical computing and graphics supported by the R Foundation for Statistical 

Computing, was used as the tool to estimate the model parameters to fit the SARIMA to achieve 

the purpose of this study. 

3.2 Nonlinear Autoregressive Neural Network (NARNN) Model 

The idea behind the autoregressive (AR) process is to explain the present value of the time series, 

yt, by a function of p past values, (yt-1, yt-2, ⋯, yt-p). Thus, the AR process of order p, AR(p), is 

defined by the equation: 

yt = ϕ1yt-1 + ϕ2yt-2 + ⋯ + ϕpyt-p + et = ∑i=1 p ϕiyt-i + et   (2) 

where ϕ = (ϕ1, ϕ2, ⋯, ϕp) is the vector of model coefficients for the autoregressive process, and et 

is white noise, i.e., et ~ N(0, σ2) [9]. The NARNN is a natural generalization of the classic linear 

AR(p) process. The NARNN of order p can be expressed as:  

yt = Φ(yt-1, yt-2, ⋯, yt-p, w) + ɛt     (3) 

where Φ(∙) is an unknown function determined by the neural network structure and connection 

weights, w is a vector of all parameters (weights), and ɛt is the error term. Thus, it performs a 

nonlinear functional mapping from the past observations, (yt-1, yt-2, ⋯, yt-p), to the future value, yt, 

which is equivalent to a nonlinear autoregressive model [12]. 
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With the time series data, lagged values of the time series can be used as inputs to a neural 

network, so-called this the NARNN model. Mathematically, the NARNN model [13] can be 

written by the equation of the form as: 

yt = a0 + ∑j=1 k wj Φ(b0j + ∑i=1 d wijyt-i) + ɛt    (4) 

where d is the number of input units, k is the number of hidden units, a0 is the constant 

corresponding to the output unit, b0j is the constant corresponding to the hidden unit j, wj is the 

weight of the connection between the hidden unit j and the output unit, wij is the parameter 

corresponding to the weight of the connection between the input unit i and the hidden unit j, and 

Φ(∙) is a nonlinear function, so-called this the transfer (activation) function. The logistic function 

(i.e., Sigmoid) is commonly used as the hidden layer transfer function, that is, Φ(y) = 1 / (1 + 

exp(-y)). 

The most common learning rules for the NARNN model are the Levenberg-Marquardt, Bayesian 

Regularization, and Scaled Conjugate Gradient training algorithms. In this study, the Levenberg-

Marquardt (LM) algorithm was considered, because it works without computing the exact Hessian 

matrix. Instead, it works with the gradient vector and the Jacobian matrix, therefore increasing 

the training speed and has stable convergence [14].  

The LM algorithm, first published by Levenberg [15] and then rediscovered by Marquardt [16], 

has become a standard technique for nonlinear least-squares problems. It can be thought of as a 

combination of the steepest descent and the Gauss-Newton methods. The LM algorithm is an 

iterative technique that locates the minimum of an objective function F(x) that is expressed as the 

sum of squares of nonlinear functions [17],  

    F(x) = (1/2) Σi=1 n [fi(x)]2             (5) 

Furthermore, the LM algorithm steps to search the direction of the iteration given by the solution 

φi to the equations, 

(Ji
T Ji + λi I) φi = - Ji

T fi      (6) 

where Ji is the Jacobian of fi, I is the identity matrix, and λi are the non-negative scalars, called 

combination coefficient. In the Levenberg-Marquardt algorithm, for some scalar Δ > 0 related to 

λi, the vector φi is the solution of the constrained subproblem of minimizing (1/2) || Ji φ + fi ||22 

subject to || φ ||2 ≤ Δ [18]. In this study, MATLAB (2019a) was used as the tool to estimate the 

NARNN model using the LM training algorithm for the target time series monthly global price 

of soybeans. 

3.3 Hybrid SARIMA and NARNN (Hybrid) Model 

The SARIMA and NARNN models are good at modelling linear and nonlinear problems for the 

time series, respectively. However, using the hybrid model, a combination of SARIMA and 

NARNN model has both linear and nonlinear modelling capabilities, can be a better choice for 
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modelling the time series. Assuming that an unknown function can be used to demonstrate the 

relationship between linear and nonlinear components in the time series, which can be expressed 

as follows:  

yt = f(Lt, Nt)        (7) 

where linear component is represented by Lt, and nonlinear component is shown by Nt. Assuming 

that the linear and nonlinear components in the time series have simply additive relationships. 

Zhang [12] states that the time series can be considered as a combination of a linear and nonlinear 

components as follows: 

yt = Lt + Nt       (8) 

These two components should be estimated from the time series. First, the linear component will 

be modelled by the SARIMA model in this study. Then, the residuals from the SARIMA model 

will have only the nonlinear relationship, which can be obtained by taking difference of actual 

values and predicted values as follows: 

et = yt - t        (9) 

where et is the residual of the linear model at time t, and t is the predicted value for time t. To 

find the nonlinear relationship, residuals can be modelled by the NARNN model in this study as 

follows:  

t = et = f(et-1, et-2, ⋯ , et-n) + ɛt      (10) 

where f is the transformation function modelled by the NARNN model, and ɛt is the random error. 

The forecast from the SARIMA and NARNN models are combined to obtain the forecast of the 

time series ŷt which is denoted by 

ŷt = t + t       (11) 

In order to find the results for the Hybrid model, MATLAB (2019a) was used as the tool using 

the LM training algorithm to analyze time series monthly global price of soybeans to achieve the 

purpose of this study. 

4 Results 

4.1 Seasonal ARIMA (SARIMA) Model 

R 4.0.2 for Windows is an open source for statistical computing and graphics supported by the R 

Foundation for Statistical Computing was used as the tool to model and forecast monthly global 

price of soybeans from January 1990 to January 2021 in this study. The function “decompose()” 
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in R was applied to estimate the seasonal component, trend component and irregular component 

of a seasonal time series (Figure 2). The estimated seasonal component definitely displayed 

seasonality with a pattern recurrence occurring once every 12 months. 

Seasonal adjustment is the estimation and removal of seasonal effects that are not explainable by 

the dynamics of trends or cycles from a time series to reveal certain non-seasonal features. This 

can be done by subtracting the estimated seasonal component from the original time series. After 

removed the seasonal variation, the seasonally adjusted time series only contained the trend 

component and an irregular component.  

Since the ACF of the time series, seasonal adjusted monthly global price of soybeans from 

January 1990 to January 2021, showed strong positive statistically significant correlations at up 

to 26 lags that never decay to zero, and suggested that the time series was non-stationary. In terms 

of non-stationary time series, differencing can be used to transform a non-stationary time series into a 

stationary one. When both trend and seasonality are present, thus, both a non-seasonal first 

difference and a seasonal difference need to apply. The first difference of a time series is the time 

series of changes from one period to the next. Notice that the graph of the first difference of the 

time series looked approximately stationary. According to the Augmented Dickey-Fuller Test, 

Dickey-Fuller = -7.5714 with lag order = 7 and the p-value of the test was smaller than 0.01. It 

rejected the null hypothesis that is non-stationary, and also suggested that the first difference of 

the time series was stationary. 

Figure 2. Decomposition of Monthly Global Price of Soybeans, January 1990 ~ January 2021 

(Source: own work) 

The ACF of first difference shown in Figure 3 showed a steady decay after the first few lags and 

bounce around between being positive and negative statistically significant. The corresponding 

PACF of first difference in Figure 4 showed a significant positive spike at the first lag followed 

by correlations that were statistically significant. 
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Figure 3. ACF Plot of First Difference of Seasonal Adjusted Monthly Global Price of 

Soybeans, January 1990 ~ January 2021 (Source: own work) 

 
Figure 4. PACF Plot of First Difference of Seasonal Adjusted Monthly Global Price of 

Soybeans, January 1990 ~ January 2021 (Source: own work) 

Seasonal differencing is defined as a difference between a value and a value with lag that is a 

multiple of seasonality (S). In this case, S = 12 (months per year) is the span of the periodic 

seasonal behavior. The graph of the 12th difference of the time series looked approximately 

stationary. Meanwhile, the test statistic of the Augmented Dickey-Fuller Test was Dickey-Fuller 

= -26.789 with lag order = 7 and the p-value of the test was smaller than 0.01. It rejected the null 

hypothesis that is non-stationary, and also suggested that the 12th first difference of the time series 

was stationary. Figure 5 showed that ACF most likely a steady decay after the first few lags and 

bounce around between being positive and negative statistically significant. Meanwhile, Figure 6 

showed what PACF mostly looks like a steady negative decay in the partial correlations toward 

zero. 
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Figure 5. ACF Plot of 12th Difference of Seasonal Adjusted Monthly Global Price of Soybeans, 

January 1990 ~ January 2021 (Source: own work) 

Figure 6. PACF Plot of 12th Difference of Seasonal Adjusted Monthly Global Price of 

Soybeans, January 1990 ~ January 2021 (Source: own work) 

Empirically, the choice of the model order is somewhat arbitrary. In this study, the auto.arima() 

function from the “forecast” package in R 4.0.2 for Windows was employed to identify both the 

structure of the series (stationary or not) and type (seasonal or not), and sets the model's 

parameters, that takes into account the AIC, AICc or BIC values generated to determine the best 

fit SARIMA model. Consequently, the ARIMA(0,1,3)(0,0,2)12 model was selected to be the best 

fit model for the time series, according to the lowest AIC value (= 3172.57) in this study. Given 

this option, the ARIMA(0,1,3)(0,0,2)12 model was chosen for further forecasting process, and the 

parameters of the ARIMA(0,1,3)(0,0,2)12 model were presented in Table 1. 
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Table 1. Parameters of the ARIMA(0,1,3)(0,0,2)12 Model 

Parameter Estimate Standard Error 
Difference 1  
MA Lag 1 0.3458 0.0529 
MA Lag 2 0.1165 0.0544 
MA Lag 3 -0.0785 0.0545 
SMA1 -0.1388 0.0539 
SMA2 -0.1696 0.0568 

Sigma2 estimated as 289.6, Log Likelihood = -1580.29 
AIC = 3172.57, AICc = 3172.81, BIC = 3196.09 

RMSE = 16.88095, MSE = 284.966473, MAE = 11.61128, MAPE = 3.720898 
Source: own work 

The Ljung-Box Q-test [19] is a diagnostic tool used to test the lack of fit of a time series model. 

In this example, the test statistic of the Ljung-Box Q-test was Q = 31.958 with 19 degrees of 

freedom and the p-value of the test was 0.03159 (model degrees of freedom: 5, total lags used: 

24), indicating that the residuals were random and that the model provided an adequate fit to the 

data relatively. Figure 7 illustrated that the black line represented the visuals of monthly global 

price of soybeans dataset without forecasting and the red line represented the visuals of monthly 

global price of soybeans dataset with forecasted values. Forecasting process with the 

ARIMA(0,1,3)(0,0,2)12 model indicated a good fit of the SARIMA model for forecasting in this 

study. 

Figure 7. Observed and Forecasted Monthly Global Price of Soybeans (Source: own work) 

4.2 Nonlinear Autoregressive Neural Network (NARNN) Model 

In MATLAB (2019a), the NARNN model applied to time series prediction using its past values 

of a univariate time series can be expressed as follows: 

y(t) = Φ(y(t-1), y(t-2), ⋯, y(t-d)) + e(t)    (12) 

where y(t) is the time series value at time t, d is the time delay, and e(t) is the error of the 

approximation of the time series at time t. This equation describes how the NARNN model is 

used to predict the future value of a time series, y(t), using the past values of the time series, (y(t-
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1), y(t-2), ⋯, y(t-d)) [1]. The function Φ(∙) is an unknown nonlinear function, and the training of 

the neural network aims to approximate the function by means of the optimization of the network 

weights and neuron bias. This tends to minimize the sum of the squared differences between the 

observed and predicted output values (i.e., MSE) [20].  

In this study, the NARNN model was applied to model time series monthly global price of 

soybeans. Furthermore, the logistic sigmoid and linear transfer functions at the hidden and output 

layers were used respectively. The number of hidden neurons and the number of delays was set 

experimentally after a data pre‐processing and analysis stage. The extracted features were trained 

using the LM training algorithm for the target time series in the MATLAB (2019a) Neural 

Network Toolbox: 373 timesteps of one element, monthly global price of soybeans from January 

1990 to January 2021. 

Three kinds of target timesteps were set aside for the training, validation and testing phases in this 

case study. The training target timesteps are presented to the network during training, and the 

network is adjusted according to its error. The validation target timesteps are used to measure 

network generalization, and to halt training when generalization stops improving. The testing 

target timesteps have no effect on training and so provide an independent measure of network 

performance during and after training [20]. The division of the time series in this analytical work 

was 70% for the training, 15% for the validation, and 15% for the testing. Randomly, 373 data 

samples were divided into 261 data for the training, 56 data for the validation, and 56 data for the 

testing.  

The development of the optimal architecture for the NARNN model requires determination of 

time delays, the number of hidden neurons, and an efficient training algorithm. The optimum 

number of time delays and hidden neurons were obtained through a trial and error procedure. 

Furthermore, the LM algorithms were employed for training of the NARNN model and their 

performance were evaluated under the optimal neural network structure. The prediction 

performance of the models was evaluated by its mean squared error (MSE), the average squared 

difference between the observed (yi) and predicted (ŷi) values. The error analysis showed that the 

NARNN model with 8 neurons in the hidden layer and 3 time delays provided the best 

performance (MSE = 222.42221) using the LM algorithm (NARNN-LM).  

The LM algorithm typically requires more memory but less time. Training automatically stopped 

when generalization stop improving, as indicated by an increase in the MSE of the validation 

samples [1]. The results revealed the training progress using the LM algorithm stopped when the 

validation error increased for six iterations with Performance = 210, Gradient = 137, and Mu = 

1.00 at epoch 16. In terms of the processing time, the LM algorithm took 0:00:00 during training. 



Journal of Computing and Applied Informatics (JoCAI) Vol. 5, No. 2, 2021 96 

 

The performance plot is a useful diagnostic tool to plot the training, validation, and testing errors 

to check the progress of training. It also illustrates that the training stops when the validation error 

increased at the circled epoch. The performance was evaluated by taking MSE and epochs after 

the training was completed, and then the values were generated. As illustrated, the best 

performance for the validation phase was 429.9167 at epoch 6 for the NARNN-LM model. The 

results showed a good network performance because the validation and testing errors have similar 

characteristics, and did not appear that any significant overfitting has occurred. 

In the regression plots, the dashed line in each plot represents the perfect result outputs = targets, 

which can be seen on the regression plots. The solid line in each plot represents the best fit linear 

regression line between outputs and targets. On top of each plot, the regression R value measures 

the correlation between the outputs and the targets. If R = 1, this indicates that there is an exact 

linear relationship between the outputs and the targets. Otherwise, there is no linear relationship 

between the outputs and the targets. As illustrated in Figure 8, the regression R value for the 

training phase was 0.9902, for the validation phase was 0.98367, for the testing phase was 

0.984063, and for the all samples was 0.98719, respectively, indicated good predictive abilities 

of the NARNN-LM model for new datasets. 

 
Figure 8. Regression Plots of the NARNN-LM Model (Source: own work) 

The dynamic network time-series response plots were displayed in Figure 9 for the NARNN-LM 

model, showed that the outputs were distributed evenly on both sides of the response curve, and 

the errors versus time were small in the training, validation, and testing phases. The results 

indicated that the NARNN-LM model was able to predict the time series over the simulation 

period efficiently.   
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Figure 9. Network Time-Series Response of the NARNN-LM Model (Source: own work) 

The error autocorrelation function describes how the prediction errors are related in time. For a 

perfect prediction model, there should only be one nonzero value of the autocorrelation function, 

and it should occur at zero lag (i.e., MSE). This would mean that the prediction errors are 

completely uncorrelated with each other (white noise). If there is significant correlation in the 

prediction errors, then it should be possible to improve the prediction - perhaps by increasing the 

number of delays in the tapped delay lines.  

The correlations for the NARNN-LM model (Figure 10) except for the one at zero lag, almost all 

fell approximately within the 95% confidence limits around zero, so the model seemed to be 

adequate. There are however some exceptions which suggest that the created network can be 

improved by retraining it or by increasing the number of neurons in the hidden layer. If even more 

accurate results are required, retrain the network will change the initial weights and biases of the 

network, and may produce an improved network after retraining. 
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Figure 10. Error Autocorrelation of the NARNN-LM Model (Source: own work) 

4.3 Hybrid SARIMA and NARNN (Hybrid) Model 

In MATLAB (2019a), the Hybrid model applied to time series prediction using its past residuals 

from the SARIMA model can be expressed as follows: 

e(t) = Φ(e(t-1), e(t-2), ⋯, e(t-d)) + ɛ(t)    (13) 

where e(t) is the residual of the time series at time t, d is the time delay, and ɛ(t) is the error term. 

This equation describes how the Hybrid model is used to predict the future residual of a time 

series, e(t), using the past residuals of the time series, (e(t-1), e(t-2), ⋯, e(t-d)) [20].  

Similarly, the development of the optimal architecture for the Hybrid model requires 

determination of time delays, the number of hidden neurons, and an efficient training algorithm. 

According to the results of the error analysis using the MATLAB (2019a) Neural Network 

Toolbox, it showed that the Hybrid model with 8 neurons in the hidden layer and 3 time delays 

also provided the best performance (MSE = 186.43259) with the LM algorithm (Hybrid-LM). At 

the same time, the training progress using the LM algorithm for the Hybrid-LM model stopped 

when the validation error increased for six iterations with Performance = 180, Gradient = 169, 

and Mu = 1.00 at epoch 19.  

The performance plot illustrates that the training stops when the validation error increased at the 

circled epoch, and evaluated by taking MSE and epochs after the training was completed, and 

then the values were generated. As illustrated, the best performance for the validation phase was 

350.6018 at epoch 13 for the Hybrid-LM model. The results also showed a good network 

performance because the validation and testing errors have similar characteristics, and did not 

appear that any significant overfitting has occurred. 

The dynamic network time-series response plots were displayed in Figure 11 for the Hybrid-LM 

model, showed that the outputs were distributed evenly on both sides of the response curve, and 
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the errors versus time were small in the training, validation, and testing phases. The results 

indicated that the Hybrid-LM model was able to predict the time series over the simulation period 

efficiently as well.  For the Hybrid-LM model, the correlations except for the one at zero lag, all 

fell approximately within the 95% confidence limits around zero, so the model was to be adequate 

(Figure 12). 

 
Figure 11. Network Time-Series Response of the Hybrid-LM Model (Source: own work) 

 
Figure 12. Error Autocorrelation of the Hybrid-LM Model (Source: own work) 

5 Conclusion 

Prices forecast aids farmers and industries to plan for future farming activities and budgeting 

which is largely depending upon expected future prices. Therefore, forecasting future price of 

soybeans has become a crucial component in price policy. However, price forecast is vital to 

facilitate efficient decisions and will play a major role in coordinating the supply and demand of 

soybeans globally.  
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Forecast is a kind of dynamic filtering, in which past values of the time series are used to predict 

future values. Empirically, the SARIMA and NARNN models are good at modelling linear and 

nonlinear problems for the time series, respectively. However, using the hybrid model, a 

combination of the SARIMA and NARNN models has both linear and nonlinear modelling 

capabilities, can be a better choice for modelling the time series. 

The comparative results revealed that the Hybrid-LM model with 8 neurons in the hidden layer 

and 3 time delays (MSE = 186.43259) yielded higher accuracy than the NARNN-LM model with 

8 neurons in the hidden layer and 3 time delays (MSE = 222.42221), and the SARIMA, 

ARIMA(0,1,3)(0,0,2)12, model (MSE = 284.966473) in this study.   

This study contributed to the current understanding of how to obtain a better performance to 

forecast the target time series in agribusiness applying advanced techniques. The significance of 

this study provided a hands-on tool to educate the students learning the time series analysis in 

advance. Futhermore, this Hybrid SARIMA and NARNN model not only can provided richer 

information which are important in decision making process related to the future global price of 

soybeans impacts, but also can be employed in forecasting the future performance for global price 

of soybeans change outcomes.  
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