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Abstract. Recently, the research study about fish identification become a very challenging to 
researchers. Climate and environmental changes have a major impact on fish species and their 
environment. To identify fish using manual process is time consuming and need effort to gather 
samples in different environment. The identification of fish species is performed by using feature 
extraction and a series of features. Generally, the characteristic is divided into two groups namely 
general characteristics and anatomical features. General characteristics is characteristic that can 
be seen directly without the aid of tools. The characteristics include color, texture, and fiber 
direction. Although, manual is performed by expert but is possible that identification is not 
accurate. Therefore, to overcome the problem, we create a web-based application for identifying 
fish by using image as input. We use 10 class data with 300 images for each class. Then, we split 
into training and testing with 80:20 ratio. The application was developed by using the MobileNets-
V1 model. The proposed method has accuracy on 89 %, that obtain from training score is 91.04%, 
validation is 88,96%. This score is higher than other methods that used in this application. Total 
time for computation process is about 127 minutes.  
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1 Introduction 

Observing the diversity of behavior and life patterns of fish is very important so that humans can 

gain insight and knowledge about marine ecological systems and ecosystems [1]. Climate and 

environmental changes have a major impact on fish species and fish habitats. The manual method 

is usually time consuming and requires a lot of effort to obtain samples in different environments 

[2]. Through structured observations about the behavior of various fish species through 
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calculation and distribution of ecosystems, it can provide important information about the 

ecological conditions of the sea which are commonly used as parameters for observing changes 

in the marine environment [1]. Fish identification can be done with digital image processing 

techniques, the technological developments by using a digital camera and computer vision to 

make easy for humans to identify various types of fish visually. Also, it can help researchers to 

observe their movement patterns is affected by various condition and provide whole activity 

pattern based on the deeper knowledge [3]. 

In recent years the topic of research to identify and recognize fish species has become a very 

challenging challenge for researchers [4]. The identification of fish species is carried out using 

feature extraction and is based on a series of features. Generally, the characteristic is divided into 

two groups namely general characteristics and anatomical features. General characteristics is 

characteristic that can be seen directly without the aid of tools. The characteristics include color, 

texture, and fiber direction.  this technique can only be done for those who are experienced and it 

is possible that this method often experiences misidentification. Although, manual is performed 

by expert but is possible that identification result is not accurate. Therefore, to overcome the 

problem, we create a web-based application for identifying fish by using image as input. This 

application was built using the MobileNets-V1 model. MobileNets-V1 is a Convolutional Neural 

Network (CNN) architecture which address computation with a huge amount of data. 

Convolutional Neural Network is a deep learning method that is able to recognize an object in a 

digital image with high computation and need a huge amount of data. CNN's capability is claimed 

to be the best method in terms of object detection and object recognition [5]. The fundamental 

difference between the MobileNets-V1 architecture and CNN architecture is the using of a 

convolutional layer or filter thickness layer that matches the thickness of the input image. 

MobileNets-V1 divides convolution into depth wise convolution and pointwise convolution [5]. 

MobileNets-V1 has been proved to show excellent results in many fields of studies. Research 

conducted by Rajbongshi et al. (2020) that applied MobileNets-V1 architecture to classify rose’s 

diseases has successfully obtained an accuracy of 95.63% [6]. Then, research conducted by 

Suharto et al.,(2020) which also applied MobileNets-V1 architecture, to classify freshwater fish 

species has successfully obtained an accuracy of 90.00% [7]. MobileNets-V1 has also been used 

to detect diseases, which is done by Ansar et al. to detect breast cancer with an accuracy score of 

86.8% [8]. Therefore, in this research we apply MobileNets-V1 to classify fish. 

2 Research Methodology 
2.1 Related Works 

There are many researches about fish identification has proposed. Pornpanomchai, et al.(2013) 

using Artificial Neural Networks and Euclidean Distance Method (EDM) algorithm to fish image 

recognition by using dataset of 300 images of testing and 600 images of training that obtain 

accuracy about 81,67%v[9]. Research conducted by Hernandez-Serna, et al. with the title 
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Automatic Identification of Species with Neural Networks using an Artificial Neural Network 

with a dataset of 697 fish images yields an accuracy of 91.65% [10]. Research conducted by 

Spampinato, et al. with the title 'Detecting, Tracking and Counting Fish in Low Quality 

Unconstrained Underwater Videos using the Moving Average Detection Algorithm and Adaptive 

Gaussian Mixture Model algorithm with a dataset of 20 underwater videos to detect, track and 

count fishes produces an accuracy of 85% [11]. 

2.2 MobileNets-V1 Architecture 

In this paper we use MobileNets-V1 which has architecture as shown as Table 1. 

Table 1. MobileNets-V1 Architecture 

MobileNets is one of many CNN architectures is available for mobile applications. The 

advantages of this CNN architecture are the thickness of the convolution filter shown in the 

picture. In this way, size of produced model and the bottleneck layer contained in the input and 

output is saved, making training process more accurate and faster. By using the MobileNets 

architecture on CNN will reduce the need for redundant calculations, so it is suitable for use on 

mobile devices/smartphones. MobileNets divides two twitch layers into deep convolution and 

point convolution. Then, use a process to change the result of the feature map pool layer to a 

vector shape. This process is called the fully connected layer [12]. 

Type/Stride Filter Shape Input Size 
Conv / s2 3 x 3 x 3 x 32 224 x 224 x 3 
Conv dw / s1 3 x 3 x 32 dw 112 x 112 x 32 
Conv / s1 1 x 1 x 32 x 64 112 x 112 x 32 
Conv dw / s2 3 x 3 x 64 dw 112 x 112 x 64 
Cont / s1 1 x 1 x 64 x 128 56 x 56 x 64 
Conv dw / s1 3 x 3 x 128 dw 56 x 56 x 128 
Conv / s1 1 x 1 x 128 x 128 56 x 56 x 128 
Conv dw / s2 3 x 3 x 128 dw 56 x 56 x 128 
Conv / s1 1 x 1 x 128 x 256 28 x 28 x 128 
Conv dw / s1 3 x 3 x 256 dw 28 x 28 x 256 
Conv / s1 1 x 1 x 256 x 256 28 x 28 x 256 
Conv dw / s2 3 x 3 x 256 dw  28 x 28 x 256 
Conv / s1 1 x 1 x 256 x 512 14 x 14 x 256 
5 x Conv dw / s1 3 x 3 x 512 dw 14 x 14 x 512 
5 x Conv / s1 1 x 1 x 512 x 512 14 x 14 x 512 
Conv dw / s2 3 x 3 x 512 dw 14 x 14 x 512 
Conv / s1 1 x 1 x 512 x 1024 7 x 7 x 512 
Conv dw / s2 3 x 3 x 1024 dw 7 x 7 x 1024 
Conv / s1 1 x 1 x 1024 x 1024 7 x 7 x 1024 
Avg Pool / s1 Pool 7 x 7 7 x 7 x 1024 
FC / s1 1024 x 1000 1 x 1 x 1024 
Softmax / s1 Classifier 1 x 1 x 1000 
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2.3 Research Design 

This research classifies 10 genus groups, namely lutjanus, macropharyngodon, oxycheilinus, 

pervagor, plectropomus, pseudanthias, pseudocheilinus, scolopsis, thalassoma, and wetmorella. 

by using the Convolutional Neural Network (CNN) algorithm and MobileNets architecture. The 

main process is training data. This process aims to generate a model that will be used for testing 

data. The parameter to measure the success rate of the model is the accuracy. The accuracy of the 

model is determined by evaluating against testing data. The best accuracy of the model will be 

used and deployed to website-based applications. 

 

 

 

 

 

 

 

 

This research begins with collecting data. Then, the data that has been collected will be divided 

into two parts, namely training and testing data. The training data will be used to train the model 

while the testing data will be used to evaluate the performance of the model. In model training 

phase, training data are divided into validation data which is used to estimate the model’s 

performance and define whether the model is overfitting or underfitting. The model training was 

carried out in three scenarios based on number of epochs. We train model with transfer learning 

on top of the MobileNets-V1 architecture. After the final model is obtained, the model is evaluated 

to reach performance measurement which shown as confusion matrix in order to calculate 

accuracy score. In the final stage, we deploy model to design web-based application. 

Figure 1. Research Design 
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3 Result and Discussion 

3.1 Data Acquisitions 

The dataset used in this research are the QUT Robotics fish dataset [13] that we obtain from 

Kaggle [14]. The dataset consists of 3960 images collected from 468 fish species. We group the 

fish based on its genus, for example, lutjanus adetii and lutjanus argentimaculatus will be 

grouped as lutjanus. In total, there are 194 genus groups and we only take 10 genus groups, 

namely lutjanus, macropharyngodon, oxycheilinus, pervagor, plectropomus, pseudanthias, 

pseudocheilinus, scolopsis, thalassoma, and wetmorella. The sample data for each class is highly 

imbalanced, so in order to balance the dataset we also scrap fish images from the internet until 

the total number of sample data for each class reaches 300 images. Therefore, there are 3000 

images in total that were used in this research as illustrated on Figure 2. 

3.2 Data Pre-Processing 

The fish images in dataset which we obtain have various size, so that we crop the images manually 

without make the images is different to original image.Next, we divide the dataset into a training 

set and testing set with 80:20 ratio. We also divide the training set into a validation set with the 

ratio of the validation set is 20%.  Deep learning models generally work better with huge amounts 

of data, but it is not an easy task to collect huge amounts of data as we must pre-process it 

manually. For resolving this issue, image augmentation is done on this stage. The image 

augmentation techniques are rotating, zooming, shearing, flipping, brightness adjustment, and 

normalizing the pixel value by dividing it with 255. We apply all the image augmentation 

techniques on training set to increase the amount of data and to enhance the overall dataset. In 

testing and validation set only pixel normalization is applied. To apply transfer learning, we also 

should match image resolution with size of input layer in MobileNets-V1 model which is 

224x224. 

Figure 2. Fish Image Sample 



Journal of Computing and Applied Informatics (JoCAI) Vol. 5, No. 2, 2021 65                                                          

3.3 Model Training 

Firstly, we would like to explain about the experimental environment used in this research as 

follows: Intel Core i7-4510U@2.00Ghz, NVIDIA GeForce 940M/2GB/DDR3, and 12GB/DDR3. 

In this research, we propose MobileNets-V1 pre-trained by ImageNet as the base model with 

transfer learning techniques. There are 86 layers in the base model and since we have a very 

limited resource of computation, we only unfreeze eight layers to make the eight first layers of 

MobileNets-V1 trainable. The purpose of unfreezing  selected layer is to force the weights to be 

tuned from generic feature maps to features associated to our dataset [15]. On top of the 

MobileNets model we add a global average pooling (GAP) layer which must be added before we 

can proceed to the classification phase. This GAP layer function is to down-sample the size of the 

feature map simply by taking the average of the whole feature map and as compared to the 

traditional data flattening layer, GAP layer is capable of improving the robustness of the model 

significantly [16]. Next, we add a fully connected layer with the size of 512 which is activated by 

the ReLu activation function so that the model will be able to learn more complex patterns. The 

last layer is the classification layer which is a fully connected layer with the size of 10 which is 

activated by the softmax activation function. Table 2 shows the summary of this new model. 

Table 2. Summary of Proposed Model 

3.4 Model Evaluation 

We have five training scenarios based on the number of epochs which is {30, 40, 50, 60, 70} The 

optimizer we use is Adam optimizer with learning rate of 1e-5. Table 3 shows the training results 

for each epoch scenario. 

  

Layer (type) Output Shape Parameters 
Mobilenet_1.00_224 (7 x 7 x 1024) 3,228,864 

Global average pooling (2d) 1024 0 
Fully connected layer 512 524,800 
Fully connected layer 10 5130 
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Table 3. Training Result on Different Epochs 

We choose the model that is trained on 70 epochs as our final model as it is producing the best 

accuracy. Since this research is about classification, we evaluate the model using a confusion 

matrix towards the testing set which is shown in Table 3 and we also plot the training history that 

is shown on Figure 3. 

 

Figure 3 show the model use 70 epochs, the MobileNets model produce the good result because 

there is no overfit between the accuracy and loss model. 

Based on the confusion matrix shown in Table 4, the accuracy generated by the model that is 

trained with 70 epochs and learning rate of 1e-5 is 89,00% that can be calculated as follows [17]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1
𝐵!

*𝑀"

#!

"$%

	

=
52 + 58 + 49 + 54 + 53 + 53 + 58 + 54 + 50 + 53

600
× 100%	

= 89,00% 

  

Epoch Training Accuracy Validation 
Accuracy Duration (minute) 

30 82,27% 83,75% 48 
40 85,56% 84,38% 63 
50 88,01% 87,71% 80 
60 89,03% 90,21% 95 
70 91,04% 88,96% 127 

Figure 3. Model Training History 
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Table 4. Confusion Matrix 

Class label: 0 (lutjanus), 1 (macropharyngodon), 2 (oxycheilinus), 3 (pervagor), 4 
(plectropomus), 5 (pseudanthias), 6 (pseudocheilinus), 7 (scolopsis), 8 (thalassoma), 9 
(wetmorella) 

Further, we also compare our proposed model with similar research that uses the same dataset as 

ours. Although our model accuracy is lower, but our model still produces similar accuracy which 

can still be compared. Table 5 shows model comparison with similar research. 

Table 5. Comparison of Proposed Model with Similar Research 

In Table 5 our model has lower accuracy than the others. Our model received a testing accuracy 

of 89.0%, which is better than the model created by [4]. The model formed by [4] is a modification 

of the AlexNet model which gets an accuracy of 85.59%.  Then, when our model is compared to 

[2], the accuracy is lower by 1.48%. The model by [2] is a modified and reduced version of 

AlexNet with an additional dropout layer before the classification layer. This model managed to 

obtain testing accuracy of 90.48%. In this research only the eight first layers of the MobileNets-

V1 are unfreeze since we have very limited computation power with low memory of GPU. 

Therefore, pattern on the data cannot be fully recognized by the model, resulting in low accuracy. 

If the layers on the model are fully unfreeze, the model will produce much higher accuracy. 

3.5 Model Deployment 

At the deployment model stage, the model deployed on the application system is a model that has 

been trained on 70 epochs with training accuracy of 91,04% and testing accuracy of 89.00%. The 

model with this evaluation value is deployed in a website-based application using Python Flask 

and Bootstrap, the screen display of the application is available in Figure 4 and Figure 5. On the 

main page of the application shown in Figure 4, user input a fish image. After image is uploaded, 

Confusion Matrix 
Predicted Class 

0 1 2 3 4 5 6 7 8 9 

Actual 
Class 

0 52 0 1 0 3 2 1 1 0 0 
1 0 58 0 0 0 0 0 0 1 1 
2 1 0 49 2 3 0 2 1 3 0 
3 1 4 0 54 3 0 0 0 1 0 
4 0 1 1 2 53 0 0 3 0 0 
5 2 0 0 1 1 53 2 1 0 0 
6 0 0 1 1 0 0 58 0 0 0 
7 5 0 1 0 0 1 0 54 1 0 
8 1 2 3 0 2 0 1 1 50 0 
9 0 1 1 2 0 0 3 0 0 53 

Research Validation Accuracy Testing Accuracy 
Khalifa, et al. [4] 97,10% 85,59% 
Iqbal, et al. [2] 98,20% 90,48% 

Proposed model 88,96% 89,00% 
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the user press prediction button to get the prediction result what the kind of species as shown as 

prediction result page on Figure 5.  

  

Figure 5. Home Page 

Figure 4. Prediction Result 
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4 Conclusion 

The proposed method of classification using MobileNets-V1 of fish species gives an accuracy of 

89.00%, train score is 91.04%, validation is 88.96% which is excellent and comparable with the 

other current implemented methods used for this application. In research, we use 10 class data with 

300 images for each class. Then, we split the dataset into a training and testing set with 80:20 ratio 

and we also split the training data into a validation set. Hence the proposed approach can certainly 

be used for real time applications as the computation time is 127 minutes. The method couldn’t 

achieve 100% accuracy as some images couldn’t be classified accurately due to limited time and 

resources of GPU memory. Further, we will improve our algorithm by implementing image 

enhancement techniques to counter for the lost features in the images. 
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