
Journal of Computing and Applied Informatics (JoCAI) Vol. 01, No. 1, 2017 | 30 - 37 

 

DATA SCIENCE  
Journal of Computing and Applied Informatics 

 
 

 
*Corresponding author at:  
1College of Science and Engineering, School of Environmental Design, Kanazawa University, Japan 
2,3Department of Computer Science, Faculty of Computer Science and Information Technology, Universitas 

Sumatera Utara, Medan 20155, Indonesia 
E-mail address: ade_candra@stu.kanazawa-u.ac.jp (Ade Chandra), mandrib@usu.ac.id (Mohammad Andri 

Budiman), dian.rachmawati@usu.ac.id (Dian Rachmawati) 
 
Copyright © 2017 Published by Talenta Publisher 
ISSN: 2580-6769 | e-ISSN: 2580-829X |DOI: 10.32734/jocai.v1.i1-65 
Journal Homepage: https://talenta.usu.ac.id/JoCAI 

On Factoring the RSA Modulus Using Tabu Search 

Ade Candra1, Mohammad Andri Budiman2, and Dian Rachmawati3 

1College of Science and Engineering, School of Environmental Design, Kanazawa University 

2,3Department of Computer Science, Universitas Sumatera Utara, Medan, Indonesia 
 

Abstract. It is intuitively clear that the security of RSA cryptosystem depends on the 
hardness of factoring a very large integer into its two prime factors. Numerous studies about 
integer factorization in the field of number theory have been carried out, and as a result, lots 
of exact factorization algorithms, such as Fermat’s factorization algorithm, quadratic sieve 
method, and Pollard’s rho algorithm have been found. The factorization problem is in the 
class of NP (non-deterministic polynomial time). Tabu search is a metaheuristic in the field 
of artificial intelligence which is often used to solve NP and NP-hard problems; the result of 
this method is expected to be close-to-optimal (suboptimal). This study aims to factorize the 
RSA modulus into its two prime factors using tabu search by conducting experiments in 
Python programming language and to compare its time performance with an exact 
factorization algorithm, i.e. Pollard’s algorithm. The primality test is done with Lehmann’s 
algorithm. 

Keyword: RSA, Tabu search, Pollard’s factorization, Prime numbers, Lehmann’s primality 
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Abstrak. Secara intuitif, keamanan sistem kriptografi kunci publik RSA bergantung kepada 
sulitnya memfaktorisasi sebuah bilangan bulat yang sangat besar menjadi dua buah faktor 
primanya. Penelitian mengenai faktorisasi bilangan bulat umumnya dilakukan di ranah teori 
bilangan dan telah menghasilkan beberapa macam algoritma eksak, seperti algoritma 
faktorisasi Fermat, metode saringan kuadratik, dan algoritma Pollard. Masalah faktorisasi 
itu sendiri termasuk dalam kelas NP (non-deterministic polynomial time). Tabu search 
adalah suatu metaheuristik pada ranah kecerdasan buatan yang jamak dipakai untuk 
menyelesaikan masalah kelas NP dan NP-hard; kategori hasil dari metode ini adalah 
mendekati optimal (suboptimal). Penelitian ini berupaya untuk memfaktorkan modulus RSA 
menjadi dua buah faktor primanya dengan menggunakan tabu search dengan pendekatan 
eksperimental dalam bahasa pemrograman Python dan membandingkan waktu 
faktorisasinya dengan salah satu algoritma eksak, yaitu algoritma Pollard. Uji keprimaan 
dilakukan dengan algoritma Lehmann.    

Kata Kunci: RSA, tabu search, faktorisasi Pollard, bilangan prima, uji prima Lehmann, 
Python. 
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1. Introduction  

RSA is one of the most widely used algorithms in public key cryptosystems. The RSA 

cryptosystem was created by Rivest, Shamir, and Adleman [5]. The security of RSA depends on 

how hard it is to factor its public key, n, into two corresponding prime numbers, p and q, or its 

private keys. The value of n should be big enough so that any cryptanalyst that attempts to 

factorize n will not have ample time to do so. In 2007, it was noted that 1039 bit integer could 

only be factored by four hundreds computer in more than eleven months using special number 

field algorithm [6]. This is not surprising, since factorization is in the class of NP 

(nondeterministic polynomial time). Wiener [4] concluded that the modulus n and the public key 

e are useful to estimate a fraction that involves the private key d. 

There are plenty of studies in the field of number theory that resulted numerous exact algorithms 

such as Fermat’s factorization, Pollard-rho, quadratic sieve, etc. However, there are not enough 

references that could give an experimental figure as to whether or not non-exact methods such as 

metaheuristics could be useful in factoring large integers into their corresponding prime factors. 

The cryptanalysis techniques using metaheuristic have been largely done to attack classical 

ciphers. For example, Garg [1] experimented with genetic algorithms, tabu search, and simulated 

annealing to attack transposition cipher and recommended tabu search as the most powerful 

method of all the three methods. Barnes and Laguna [3] suggested that genetic algorithm and 

simulated annealing may be combined with tabu search in a hybrid system in order to solve hard 

optimization problems. However, as noted before, studies that used metaheuristics to cryptanalyze 

public key cryptosystems (such as RSA) are not abundantly available. 

In this study, we attempted to compare experimentally a metaheuristic method called tabu search 

and an exact algorithm named Pollard factorization algorithm in order to give some ideas about 

their comparative time performance in factorizing RSA public key. The experiment was done in 

Python programming language. The primality test being used was Lehmann’s algorithm.   

2. Method 

Tabu search is a metaheuristic procedure to solve optimization problems that can be embedded 

into other heuristic procedures to avoid the trap of local minima; more about tabu search can be 

found in a tutorial by Glover [2].  

RSA public key is n, and its private keys are p and q. From [5], we know that n = pq, so that the 

RSA security is based on how hard it is to factor n into p and q.  

Our method is as follows. First, we experiment the factorization of RSA public key n with tabu 

search, keeping records of its time performances. Second, we experiment it again with Pollard’s 
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factorization algorithm. Third, we make a conclusion of whether or not tabu search is as good as 

Pollard’s algorithm to factorize the RSA public key. 

Our Python source code for the tabu search is as follows. 

  

def tweak(X): 
 p = getRandomPrime(X[0], X[0] + pr) 
 q = getRandomPrime(n // p - qr, n // p + qr) 
 if p * q > n: 
  p = getRandomPrime(X[0] // 2, X[0] // 2 + pr) 
  q = getRandomPrime(n // p - qr, n // p + qr) 
 return [p, q] 
  
def delta(Q): 
 return abs(n - Q[0] * Q[1]) * 1.0 
 
print "n =", n 
 
l = 100 
N = 100 
max_time = 3 
 
p = int(math.sqrt(n)) 
q = int(math.sqrt(n)//2) 
S = [p, q]  
best = S 
L = [] 
L.append(S) 
 
x = [] 
y = [] 
exploration = 0 
x.append(exploration) 
y.append(delta(S)) 
 
x2 = [] 
y2 = [] 
walk = 0 
x2.append(walk) 
y2.append(delta(S)) 
 
start = time.time() 
stop = False 
while not(stop): 
 if len(L) > l: 
  del L[0] 
 R = tweak(S) 
 exploration += 1 
 x.append(exploration) 
 y.append(delta(R)) 
 print "L =", L 
 print "R =", R 
 for i in range(N - 1): 
  W = tweak(S) 
  walk += 1 
  x2.append(walk) 
  y2.append(delta(W)) 
  print "W =", W 
  if W not in L and (delta(W) < delta(R) or R in L): 
   R = W 
  if delta(R) == 0.0:   
   stop = True 
   break 
  if time.time() - start > max_time: 
   print "time's up" 
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   stop = True 
   break 
 if R not in L: 
  S = R 
  L.insert(0, R) 
 if delta(S) < delta(best): 
  best = S 
 if delta(best) == 0.0: 
  print "success" 
  print best 
  print "running time", time.time() - start, "secs" 
  break  
 if time.time() - start > max_time: 
  print "time's up" 
  break 
 
pyp.subplot(2, 1, 1) 
pyp.title('Factoring RSA Modulus n = ' + str(n) + ' with Tabu Search') 
 
pyp.ylabel('delta') 
pyp.plot(x, y, 'r.-') 
pyp.legend(['exploration']) 
pyp.grid(True) 
 
pyp.subplot(2, 1, 2) 
pyp.ylabel('delta') 
pyp.plot(x2, y2, 'b.-') 
pyp.legend(['walk']) 
pyp.grid(True) 
 
pyp.show() 
 
pyp.savefig('ts-rsa.png') 

Our Python source code for Lehmann’s algorithm used for the primality test is as follows. More 

about Lehman’s algorithm can be found in [7]. 

def rnd(mini, maxi): 
 return random.randint(mini, maxi) 
 
def Lehmann(p): 
 k = 10 
 for i in range(k): 
  a = rnd(2, p - 1) 
  L = pow(a, (p - 1) / 2, p) 
  if L != 1 and L - p != -1: 
   return False 
 return True  
 
def getRandomPrime(mini, maxi): 
 p = rnd(mini, maxi) // 2 * 2 + 1 
 while not Lehmann(p): 
  p = rnd(mini, maxi) // 2 * 2 + 1 
 return p 
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Our Python source code for Pollard. More about Pollard’s factorization algorithm can be found 

in [8].  

#title: Pollard's Factorization Algorithm 
#purpose: Factorization of Large Numbers 
#author: Mohammad Andri Budiman 
#version: 0.99 
#date: May 20th 2017 
#time: 10:33 
 
import math, random, time 
 
def modexp(x, y,n): 
 binary = dec2bin(y) 
 z = 1 
 for i in binary: 
  if i == 0: 
   z = z * z % n 
  else: 
   z = x * z * z % n 
 return z 
  
def dec2bin(d): 
 binary = [] 
 while d != 0: 
  binary.append(d % 2) 
  d = d // 2 
 binary.reverse() 
 return binary 
  
def rnd(min, max): 
 return random.randint(min, max) 
  
def gcd(m, n): 
 r = m % n 
 if r == 0: 
  return n 
 return gcd(n, r) 
  
def Pollard(n): 
 a = 2 
 i = 2 
 factor = [1] 
 while (n % 2 == 0): 
  factor.append(2) 
  n = n // 2 
 while (n != 1): 
  if Lehmann(n): 
   factor.append(n) 
   factor.sort() 
   return factor 
  a = modexp(a, i, n) 
  d = gcd(a - 1, n) 
  if 1 < d < n: 
   factor.append(d) 
   n = n // d 
   i = 1 
  i += 1 
   
n = 206957 
 
start = time.time() 
factor = Pollard(n) 
print "n =", n 
print factor[1:] 
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print "running time", time.time() - start, "secs" 
result = 1 
for i in factor: 
 result = result * i 

3. Result and Discussion  

The results of factoring small digits of n with tabu search are as follows: 
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Meanwhile, to factorize n = 36391 = 151 * 241, Pollard’s algorithm only needed 0.00563 second, 

to factor n = 206957 = 349 * 593 only 0.043162 second is needed, and to factor n = 1586759 = 

1231 * 1289 only 0.012964 second is needed.  

Moreover, we conduct a test on n = 56385344634735953, and Pollard’s algorithm quickly 

determined that it is 1993 * 28291693243721 in only 0.017551 second. This very large value of 

n was failed to factorize with tabu search. 

4. Conclusion  

From our experimental findings, it is acceptable to conclude that tabu search is not a good 

candidate to factorize the RSA public key n into its corresponding private keys, p and q. Tabu 

search needed more time to factorize even small digits of n as compared to Pollard’s algorithm 

which could factorize n with larger digits for smaller amounts of time.  
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