
Journal of Computing and Applied Informatics (JoCAI) Vol. 01, No. 1, 2017 | 30 - 37

DATA SCIENCE
Journal of Computing and Applied Informatics

*Corresponding author at:
1College of Science and Engineering, School of Environmental Design, Kanazawa University, Japan
2,3Department of Computer Science, Faculty of Computer Science and Information Technology, Universitas

Sumatera Utara, Medan 20155, Indonesia
E-mail address: ade_candra@stu.kanazawa-u.ac.jp (Ade Chandra), mandrib@usu.ac.id (Mohammad Andri

Budiman), dian.rachmawati@usu.ac.id (Dian Rachmawati)

Copyright © 2017 Published by Talenta Publisher
ISSN: 2580-6769 | e-ISSN: 2580-829X |DOI: 10.32734/jocai.v1.i1-65
Journal Homepage: https://talenta.usu.ac.id/JoCAI

On Factoring the RSA Modulus Using Tabu Search

Ade Candra1, Mohammad Andri Budiman2, and Dian Rachmawati3

1College of Science and Engineering, School of Environmental Design, Kanazawa University

2,3Department of Computer Science, Universitas Sumatera Utara, Medan, Indonesia

Abstract. It is intuitively clear that the security of RSA cryptosystem depends on the
hardness of factoring a very large integer into its two prime factors. Numerous studies about
integer factorization in the field of number theory have been carried out, and as a result, lots
of exact factorization algorithms, such as Fermat’s factorization algorithm, quadratic sieve
method, and Pollard’s rho algorithm have been found. The factorization problem is in the
class of NP (non-deterministic polynomial time). Tabu search is a metaheuristic in the field
of artificial intelligence which is often used to solve NP and NP-hard problems; the result of
this method is expected to be close-to-optimal (suboptimal). This study aims to factorize the
RSA modulus into its two prime factors using tabu search by conducting experiments in
Python programming language and to compare its time performance with an exact
factorization algorithm, i.e. Pollard’s algorithm. The primality test is done with Lehmann’s
algorithm.

Keyword: RSA, Tabu search, Pollard’s factorization, Prime numbers, Lehmann’s primality
test, Python.

Abstrak. Secara intuitif, keamanan sistem kriptografi kunci publik RSA bergantung kepada
sulitnya memfaktorisasi sebuah bilangan bulat yang sangat besar menjadi dua buah faktor
primanya. Penelitian mengenai faktorisasi bilangan bulat umumnya dilakukan di ranah teori
bilangan dan telah menghasilkan beberapa macam algoritma eksak, seperti algoritma
faktorisasi Fermat, metode saringan kuadratik, dan algoritma Pollard. Masalah faktorisasi
itu sendiri termasuk dalam kelas NP (non-deterministic polynomial time). Tabu search
adalah suatu metaheuristik pada ranah kecerdasan buatan yang jamak dipakai untuk
menyelesaikan masalah kelas NP dan NP-hard; kategori hasil dari metode ini adalah
mendekati optimal (suboptimal). Penelitian ini berupaya untuk memfaktorkan modulus RSA
menjadi dua buah faktor primanya dengan menggunakan tabu search dengan pendekatan
eksperimental dalam bahasa pemrograman Python dan membandingkan waktu
faktorisasinya dengan salah satu algoritma eksak, yaitu algoritma Pollard. Uji keprimaan
dilakukan dengan algoritma Lehmann.

Kata Kunci: RSA, tabu search, faktorisasi Pollard, bilangan prima, uji prima Lehmann,
Python.

Received 27 April 2017 | Revised 29 May 2017 | Accepted 30 June 2017

Journal of Computing and Applied Informatics (JoCAI) Vol. 01, No. 1, 2017 31

1. Introduction

RSA is one of the most widely used algorithms in public key cryptosystems. The RSA

cryptosystem was created by Rivest, Shamir, and Adleman [5]. The security of RSA depends on

how hard it is to factor its public key, n, into two corresponding prime numbers, p and q, or its

private keys. The value of n should be big enough so that any cryptanalyst that attempts to

factorize n will not have ample time to do so. In 2007, it was noted that 1039 bit integer could

only be factored by four hundreds computer in more than eleven months using special number

field algorithm [6]. This is not surprising, since factorization is in the class of NP

(nondeterministic polynomial time). Wiener [4] concluded that the modulus n and the public key

e are useful to estimate a fraction that involves the private key d.

There are plenty of studies in the field of number theory that resulted numerous exact algorithms

such as Fermat’s factorization, Pollard-rho, quadratic sieve, etc. However, there are not enough

references that could give an experimental figure as to whether or not non-exact methods such as

metaheuristics could be useful in factoring large integers into their corresponding prime factors.

The cryptanalysis techniques using metaheuristic have been largely done to attack classical

ciphers. For example, Garg [1] experimented with genetic algorithms, tabu search, and simulated

annealing to attack transposition cipher and recommended tabu search as the most powerful

method of all the three methods. Barnes and Laguna [3] suggested that genetic algorithm and

simulated annealing may be combined with tabu search in a hybrid system in order to solve hard

optimization problems. However, as noted before, studies that used metaheuristics to cryptanalyze

public key cryptosystems (such as RSA) are not abundantly available.

In this study, we attempted to compare experimentally a metaheuristic method called tabu search

and an exact algorithm named Pollard factorization algorithm in order to give some ideas about

their comparative time performance in factorizing RSA public key. The experiment was done in

Python programming language. The primality test being used was Lehmann’s algorithm.

2. Method

Tabu search is a metaheuristic procedure to solve optimization problems that can be embedded

into other heuristic procedures to avoid the trap of local minima; more about tabu search can be

found in a tutorial by Glover [2].

RSA public key is n, and its private keys are p and q. From [5], we know that n = pq, so that the

RSA security is based on how hard it is to factor n into p and q.

Our method is as follows. First, we experiment the factorization of RSA public key n with tabu

search, keeping records of its time performances. Second, we experiment it again with Pollard’s

Journal of Computing and Applied Informatics (JoCAI) Vol. 01, No. 1, 2017 32

factorization algorithm. Third, we make a conclusion of whether or not tabu search is as good as

Pollard’s algorithm to factorize the RSA public key.

Our Python source code for the tabu search is as follows.

def tweak(X):
 p = getRandomPrime(X[0], X[0] + pr)
 q = getRandomPrime(n // p - qr, n // p + qr)
 if p * q > n:
 p = getRandomPrime(X[0] // 2, X[0] // 2 + pr)
 q = getRandomPrime(n // p - qr, n // p + qr)
 return [p, q]

def delta(Q):
 return abs(n - Q[0] * Q[1]) * 1.0

print "n =", n

l = 100
N = 100
max_time = 3

p = int(math.sqrt(n))
q = int(math.sqrt(n)//2)
S = [p, q]
best = S
L = []
L.append(S)

x = []
y = []
exploration = 0
x.append(exploration)
y.append(delta(S))

x2 = []
y2 = []
walk = 0
x2.append(walk)
y2.append(delta(S))

start = time.time()
stop = False
while not(stop):
 if len(L) > l:
 del L[0]
 R = tweak(S)
 exploration += 1
 x.append(exploration)
 y.append(delta(R))
 print "L =", L
 print "R =", R
 for i in range(N - 1):
 W = tweak(S)
 walk += 1
 x2.append(walk)
 y2.append(delta(W))
 print "W =", W
 if W not in L and (delta(W) < delta(R) or R in L):
 R = W
 if delta(R) == 0.0:
 stop = True
 break
 if time.time() - start > max_time:
 print "time's up"

Journal of Computing and Applied Informatics (JoCAI) Vol. 01, No. 1, 2017 33

 stop = True
 break
 if R not in L:
 S = R
 L.insert(0, R)
 if delta(S) < delta(best):
 best = S
 if delta(best) == 0.0:
 print "success"
 print best
 print "running time", time.time() - start, "secs"
 break
 if time.time() - start > max_time:
 print "time's up"
 break

pyp.subplot(2, 1, 1)
pyp.title('Factoring RSA Modulus n = ' + str(n) + ' with Tabu Search')

pyp.ylabel('delta')
pyp.plot(x, y, 'r.-')
pyp.legend(['exploration'])
pyp.grid(True)

pyp.subplot(2, 1, 2)
pyp.ylabel('delta')
pyp.plot(x2, y2, 'b.-')
pyp.legend(['walk'])
pyp.grid(True)

pyp.show()

pyp.savefig('ts-rsa.png')

Our Python source code for Lehmann’s algorithm used for the primality test is as follows. More

about Lehman’s algorithm can be found in [7].

def rnd(mini, maxi):
 return random.randint(mini, maxi)

def Lehmann(p):
 k = 10
 for i in range(k):
 a = rnd(2, p - 1)
 L = pow(a, (p - 1) / 2, p)
 if L != 1 and L - p != -1:
 return False
 return True

def getRandomPrime(mini, maxi):
 p = rnd(mini, maxi) // 2 * 2 + 1
 while not Lehmann(p):
 p = rnd(mini, maxi) // 2 * 2 + 1
 return p

Journal of Computing and Applied Informatics (JoCAI) Vol. 01, No. 1, 2017 34

Our Python source code for Pollard. More about Pollard’s factorization algorithm can be found

in [8].

#title: Pollard's Factorization Algorithm
#purpose: Factorization of Large Numbers
#author: Mohammad Andri Budiman
#version: 0.99
#date: May 20th 2017
#time: 10:33

import math, random, time

def modexp(x, y,n):
 binary = dec2bin(y)
 z = 1
 for i in binary:
 if i == 0:
 z = z * z % n
 else:
 z = x * z * z % n
 return z

def dec2bin(d):
 binary = []
 while d != 0:
 binary.append(d % 2)
 d = d // 2
 binary.reverse()
 return binary

def rnd(min, max):
 return random.randint(min, max)

def gcd(m, n):
 r = m % n
 if r == 0:
 return n
 return gcd(n, r)

def Pollard(n):
 a = 2
 i = 2
 factor = [1]
 while (n % 2 == 0):
 factor.append(2)
 n = n // 2
 while (n != 1):
 if Lehmann(n):
 factor.append(n)
 factor.sort()
 return factor
 a = modexp(a, i, n)
 d = gcd(a - 1, n)
 if 1 < d < n:
 factor.append(d)
 n = n // d
 i = 1
 i += 1

n = 206957

start = time.time()
factor = Pollard(n)
print "n =", n
print factor[1:]

Journal of Computing and Applied Informatics (JoCAI) Vol. 01, No. 1, 2017 35

print "running time", time.time() - start, "secs"
result = 1
for i in factor:
 result = result * i

3. Result and Discussion

The results of factoring small digits of n with tabu search are as follows:

Journal of Computing and Applied Informatics (JoCAI) Vol. 01, No. 1, 2017 36

Meanwhile, to factorize n = 36391 = 151 * 241, Pollard’s algorithm only needed 0.00563 second,

to factor n = 206957 = 349 * 593 only 0.043162 second is needed, and to factor n = 1586759 =

1231 * 1289 only 0.012964 second is needed.

Moreover, we conduct a test on n = 56385344634735953, and Pollard’s algorithm quickly

determined that it is 1993 * 28291693243721 in only 0.017551 second. This very large value of

n was failed to factorize with tabu search.

4. Conclusion

From our experimental findings, it is acceptable to conclude that tabu search is not a good

candidate to factorize the RSA public key n into its corresponding private keys, p and q. Tabu

search needed more time to factorize even small digits of n as compared to Pollard’s algorithm

which could factorize n with larger digits for smaller amounts of time.

REFERENCES

[1] P. Garg, "Genetic algorithms, tabu search and simulated annealing: a comparison between
three approaches for the cryptanalysis of transposition cipher." Journal of Theoretical and
Applied Information Technology, 2009, pp. 387-392.

[2] F. Glover, "Tabu search: A tutorial." Interfaces 20.4, 1990, pp. 74-94.

[3] J.W. Barnes and M. Laguna. "A tabu search experience in production scheduling." Annals
of Operations Research 41.3, 1993, pp. 139-156.

[4] M.J. Wiener, "Cryptanalysis of short RSA secret exponents." IEEE Transactions on
Information theory 36.3, 1990, pp. 553-558.

[5] R.L. Rivest, A. Shamir, and L. Adleman. "A method for obtaining digital signatures and
public-key cryptosystems." Communications of the ACM 21.2, 1978, pp. 120-126.

[6] J. Kirk, "Researcher: RSA 1024-bit Encryption not Enough." PCWorld. May 23, 2007.
Accessed May 21, 2017. http://www.pcworld.com/article/132184/article.html.

Journal of Computing and Applied Informatics (JoCAI) Vol. 01, No. 1, 2017 37

[7] D.J. Lehmann, "On primality tests." SIAM Journal on Computing 11.2, 1982, pp. 374-375.

[8] Pollard, John M. "Theorems on factorization and primality testing." Mathematical
Proceedings of the Cambridge Philosophical Society. Vol. 76. No. 03. Cambridge University
Press, 1974.

