
Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 | 1 - 11

DATA SCIENCE
Journal of Computing and Applied Informatics

*Corresponding author at: Department of Computer Science, Universitas Padjadjaran, Jalan Raya Bandung-

Sumedang KM21 Jatinangor, Kampus UNPAD Jatinangor, Sumedang 45363, Indonesia
E-mail address: afauzan92@yahoo.co.id, erick.paulus@unpad.ac.id

Copyright © 2018 Published by Talenta Publisher
ISSN: 2580-6769 | e-ISSN: 2580-829X | DOI: 10.32734/jocai.v2.i1-90
Journal Homepage: https://talenta.usu.ac.id/JoCAI

A Framework to Ensure Data Integrity and Safety

Mochammad Azmi Fauzan1, Eric Paulus2

1,2Universitas Pandjajaran, Sumedang, Indonesia

Abstract. The technology development allows people to more easily communicate and

convey information. The current communication media can facilitate its users to send and

receive digital data, such as text, sound or digital image. But in terms of security,

communications media not always ensure the confidentiality and authentication of data

traffic. Most people rely solely on the security provided by the communications media

providers in securing their data, which is essentially still inadequate. This paper presents the

development of a data security framework by applying the principles of cryptography and

digital signatures, such as authenticity, integrity, and data confidentiality. The application is

designed using the SHA-256 algorithm as digital signature, AES algorithm as file

encryption, and RSA algorithm as asymmetric key in digital file distribution and signature.

Then, several simulation testing was performed to ensure the robustness of the framework.

Furthermore, we also evaluated the speed of framework based on CPU and memory

capacity. Based on the experiment, our proposed framework can be a reliable solution for

securing data in data transaction.

Keyword: cryptography, digital signature, rsa, aes, sha-256.

Abstrak. Perkembangan teknologi memungkinkan manusia semakin mudah berkomunikasi

dan menyampaikan informasi. Media komunikasi saat ini memfasilitasi penggunanya untuk

mengirim dan menerima data berupa teks, suara atau gambar. Namun dari sisi keamanan,

tidak semua media komunikasi memastikan kerahasiaan dan integritas lalu lintas data.

Kebanyakan orang hanya mengandalkan keamanan yang disediakan oleh penyedia media

komunikasi dalam mengamankan data, yang pada dasarnya masih kurang. Makalah ini

memaparkan pengembangan skema keamanan data dengan menerapkan prinsip-prinsip

kriptografi dan tanda tangan digital, seperti keaslian, integritas, dan kerahasiaan data.

Aplikasi dirancang menggunakan algoritma SHA-256 sebagai tanda tangan digital,

algoritma AES sebagai enkripsi file, dan algoritma RSA sebagai kunci asimetris dalam

pendistribusian file dan tanda tangan digital. Pengujian ketahanan dilakukan terhadap

skema keamanan dengan menggunakan beberapa simulasi gangguan. Selanjutnya,

pengujian skema keamanan berdasarkan waktu juga dilakukan dengan mengevaluasi faktor

kapasitas CPU dan memori. Skema keamanan yang diperoleh dapat menjadi solusi yang

andal untuk mengamankan data ketika terjadi proses transaksi data.

Kata Kunci: kriptografi, tanda tangan digital, rsa, aes, sha-256

Received 27 December 2017 | Revised 3 January 2018 | Accepted 28 January 2018

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 2

1. Introduction

The Internet is one medium to exchange information or communicate. Almost everyone uses the

internet because it has become a major requirement in their daily life, whether for education,

business, entertainment, and others. But along with the rapid development of the Internet,

security issues are also increasingly complex. One of the most important elements in security is

cryptography[1].

Cryptography, known as secret writing, has classical task to offer confidentiality by encryption

algorithm[2]. Cryptography can be grouped into symmetric key methods[3][4], asymmetric key

methods[1][5], and message digest methods[6][7]. The difference of the symmetric key and

asymmetric key is number of keys[8]. The method of symmetric key uses Single key. But, the

method of asymmetric key uses two keys (public and private). Message digest method is used to

produce message digest based on a input message. Message digest is the result of a hash

computation algorithm, some examples are SHA and MD-5, which are the best known

algorithms for message digest. The integrity message is obtained by running the hash function

iteratively. If there is any modification on the message, the different message digest is

resulted[1][9]. Digital signature scheme is designed using two algorithms, one is using public

key cryptographic and the other is hash algorithm[8]. Asymmetric key and symmetric key

cannot produce any authentication data but they can make the data more secure. However,

public key cryptographic is used to ensure secrecy the distribution of secret keys[2].

Based on the information above, this paper proposed a digital signature scheme. In this scheme,

symmetric algorithm AES, a standard of symmetric algorithm provided by NIST, used for the

encryption of the main file. We implement AES because it can work fast for minimum

hardware and software specification. Therefore, it is well-suited to encrypt the large amounts of

data[2]. For the authentication, we implement SHA-256 for the hash algorithm and RSA for the

key distribution.

2. Digital Signature and Encryption Algorithm

2.1. Digital Signature

Digital signature is one of the concepts of modern cryptography. The usefulness of digital

signatures is similar to signatures in real versions, namely to provide certainty of authenticity

and approval of documents by signatories. However, the definition of digital signatures is not

the analog signature of the document owner that was inserted by means of a scanned example,

but rather to a unique code that indicates the document was late created and sent by the owner of

the legitimate document[2].

The principle used in digital signature is that the document sent must be signed by the sender

and the signature can be checked by the recipient to verify the authenticity of the submitted

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 3

document. Its function is to validate the data sent. Digital signature method uses the hashing

algorithm to produce a unique combination of characters called a message digest. In this way,

the sender is responsible for the contents of the document and can be checked the authenticity of

documents by the recipient.

The uniqueness is that if in the middle of the trip the data is modified, deleted or secretly taped

by an irresponsible person even if only 1 character only, then message digest residing on the

recipient will be different from that sent at first. Another uniqueness is that the message digest

can not be returned to its original form as it was before signature, so it is called a one-way hash.

The way digital signature works as shown in Figure 1 is as follows:

1. The sender performs a hashing process to provide a message digest

2. After the hashing done, Sender signs the message digest by using the public key used to

form the digital signature.

3. Then Sender sends the digital signature along with the document to the Receiver.

4. The receiver then verifies the message sent by the sender. In the process of verifying the

message in hashing first generate message digest and digital signature will be unsign by

using private key. If the message digests the same, then this message is original and the

message is from the actual sender and vice versa.

Figure 1. General Concept of Digital Architecture

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 4

2.2. Hash Function

The hash function is a function that accepts a string of input whose length is arbitrary and

converts the input into a string that has a fixed length and generally becomes smaller than its

original length. The output of a hash function is called a hash value or a message digest. The

hash function is a one-way function that can generate signatures of data. A single bit change

will dramatically change the hash output. The hash function is usually used to ensure integrity

and digital signature[2].

The hash function basically works in one direction. It means that the original message will be

converted to a message digest. But, the resulting message digest can not be reversed into

original message. The sender and receiver have a way so that the integrity of the data can be

investigated.

2.3. Secure Hash Algorithm 256 (SHA-256)

SHA-256 was developed by NIST (National Institute of Standards and Technology). SHA-256

can be applied in the use of digital signatures. SHA-256 will produce 256 bits message digest.

The message digest length can range between 256 to 512 bits. Secure Hash Algorithm-256 is

one of the most common hash types used. This function is a variant of SHA-1, SHA-256 is

made because it has been discovered the problem of SHA-1. Until now no one can solve the

algorithm for SHA-256. SHA-256 is commonly used as an intermediary function for other

functions, including the MAC hash function, HMAC, and some digital signature generating

functions[2].

Message digest is a value (value) derived from a data or message that has a unique nature that

indicates that the message has a certain quantity. Calculation of message digest using SHA-256

hash on message or data file given as input. SHA-256 converts the input message into a 256 bit

digest message [1]. Based on Secure Hash Standard, an input message that is shorter than 264

bits long, must be operated by 512 bits in a group and becomes a 256- bit diggest message.

2.4. RSA Algorithm (Rivest-Shamir-Adleman)

RSA cryptographic algorithm is a public key cryptography method (asymmetric). It was first

discovered in 1977 from MIT (Massachusetts Institute of Technology) which is an international

standard algorithm and can be applied to digital signature, key exchange, and encryption. The

RSA letter itself comes from the initials of their name (Rivest-Shamir-Adleman). RSA was

developed in 1978 at MIT which provides key authentication and encryption.

As a public key algorithm, RSA has two keys, namely public key and private key. Public keys

may be shared and known to anyone, and used for encryption. While private keys are

confidential only certain parties are allowed to know, and used for the decryption process[10].

First, the document is hashed and generates a message digest. Then, the message digest is

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 5

encrypted by a public key into a digital signature. RSA algorithm security lies in the difficulty

of factoring large numbers into prime factors [11]. Factoring is done to obtain private key. By

combining Private Key with Public Key from other people then both parties can share secret

message which only known by both parties [8]. Until now RSA is still trusted and widely used

on the internet. RSA consists of three processes: key generation algorithm, encryption process,

and decryption process.

Three main formulas are used to generate RSA key pair. Equation (1) and (2) are used to

calculate parameter e and d, where m = p * q and ø (m) =(p-1)*(q-1). Parameter p and q are

large prime number that can be chosen randomly. Based on the calculation result of equation (1)

and (2), we can obtain (n,d) as the private key and (e,m) as public key.

gcd(∅(𝑚), 𝑒) = 1 (1)

𝑑 = 𝑒−1(𝑚𝑜𝑑 ∅ (𝑛)) (2)

Once the public key is generated, anyone can use the public key. The RSA encryption algorithm

uses the exponential function in modular m, as shown in equation (3).

𝑐 = 𝑝𝑒 𝑚𝑜𝑑 𝑚 (3)

Similarly as encryption, the RSA decryption algorithm is a modular exponential function m

using the private key, as shown in equation (4).

𝑝 = 𝑐𝑑 𝑚𝑜𝑑 𝑚 (4)

A. AES Algorithm (Advanced Encryption Standard)

A contest of encryption system is arranged by NIST (1997) to replace the Data Encryption

Standard (DES) with the Advanced Encryption Standard (AES). After some selections, NIST

selected the Rijndael encoding system developed by Joan Daemen and Vincent Rijment as the

AES encryption system in 2000.

The key expansion process has an initial key input with 4 word length. In the AES algorithm

with 128 bit length, the expansion process produces 44 key words by performing several

operations for 10 iterations[12]. The operations performed in each iteration are as follows:

1. Rot-Word, is a circular left shift operation on the last word of a state.

2. Sub-Word, substituting each word element with S-Box.

3. Word results from sub-word operations performed XOR operations with round-constant.

In this scheme, AES is used in main file encryption. AES encryption algorithm with 10 rounds

using 4 transformations, Sub-Bytes, Shift-Row, Mix-Column and AddRound-Key and Add-

Round-Key transformation done before the 10th encryption process. In round 1 - 9, the AES

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 6

encryption algorithm performs all the transformations in sequence while in round 10 the

transformations are SubBytes, Shift-Row and Add-Round- Key.

AES decryption algorithm with 10 rounds using 4 transformations, Inverse Shift-Row, Inverse

Sub-Byte, Inverse Mix-Column and Add-Round-Key and Add-Round-Key transformation done

before decryption process. In round 1 - 9, the AES decryption algorithm performs all the

transformations while in round 10 the transformations are Inverse Shift-Row, Inverse Sub-Byte

and Add-Round-Key.

3. Methodology

We proposed a data security framework using combination digital signature method and

encryption method. There are two roles in the framework that is as sender and receiver. Figure 2

shows the process of this framework.

Figure 2. Digital Signature and Cryptographer Framework

Digital signature and encryption process by the sender:

1. The sender must have the pairs of keys.

2. The message is hashed to generate a message digest.

3. The result of message digest or digital signature will be encrypted using private key using

RSA algorithm, while the main file is encrypted using AES. Information from the whole

encryption result will be summarized in the manifest file, where there are also AES keys

for the main file decryption process. Manifest files are encrypted using RSA.

4. Then the result of the digital signature and the manifest file is placed with an encrypted

message, then both can be sent.

Original

Message Digest

Sender

Key

Message

Digest

Original

Message

AES Key

Message

Digest

Key
Manifest

Receiver

AES Encrypt Encrypted

Message

Manifest

Hash RSA Encrypt

AES

Decrypt

Hash

RSA

Decrypt

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 7

Digital signature and encryption process by the recipient:

1. Messages and signatures are decrypted first.

2. The signature is decrypted using the sender's private key, generating the original message

digest. While the main message is decrypted using information from the manifest file.

3. Rehashed the message to get message digest.

4. Next, the message digest will be compared. If the message digest is the same with the

signature then the authentication valid and the received signature are from the correct

sender.

4. Experiments and Results

This research used some image samples with different size and type, shown in Table 1. The

image samples are obtained from philologist in Sundanese Department, Universitas Padjadjaran

that contain Sundanese manuscript [13]. There were two experiments to evaluate the

performance of digital signature and cryptography framework. First, we changed the main file,

primary key file, signature or manifest file. Then we used those files to evaluate the robustness

of the framework. Second, we investigated the computation speed of the framework based on

various hardware specifications.

 Table 1. The size of image samples

File Name Type Size (B)

F1 3306_GT1.bmp image 123,942

F2 dokumen1.rtf Text 123,975

F3 3309.tif Image 3,199,368

F4 dokumen2.docx Text 3,199,488

F5 3-19-30-2.nef Image 18,267,794

F6 3-19-90-12.tif Image 48,690,172

4.1. Encryption and Decryption Simulation

The first step is to generate public key and private key. Then, we input the public key and the

original file. The key information and the signature value can be viewed after the encryption

process succeeds. This process can be seen in Figure 3. There are two outputs of the encryption

process, i.e. filename.encrypted and filename.manifest. The encrypted file cannot be opened by

the regular way. Those two files can be sent separately to the receiver.

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 8

(a) (b)

Figure 3. Sample of Encryption Interface: (a) Input File and Public Key Setting, (b)

Encryption Info Results

After the file is received, the recipient decrypts the file using the available data. In the process,

the application system decrypts the first manifest file using the private key to get the AES key

values, the signature file, and the actual file extension. By using AES key information, then the

system can reverse the file back to its original form, shown in Figure 4. Then we can check the

authentication of the original file.

(a) (b)

Figure 4. Sample of Decryption Interface: (a) Input Encrypted File and manifest File and

Private Key setting, (b) Decryption Info Results

4.2. Attacks Simulation

We assumed that an attacker sends an unauthorized attachment file with an unauthorized

encryption file, replacement of a public key, or a replacement in the signature. It is also assumed

that the attacker does not damage the private keys, but only replaces the manifest file with a

fake one.

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 9

Table 2. Attacks Simulation

 Parameters Output Result

Simulation
Number Original File

Authenticity
Valid

Signature

Valid
Private

Key

Valid
AES Key
(Manifest)

Decryption

Authentication

1 √ √ x √ x x

2 √ √ √ x x x

3 √ x √ √ √ x

4 x √ √ √ x x

Table 2 shows which parameter is being attacked or modified. Symbol √ can be meant as

authentic, valid, or succeed. Symbol x can be meant as inauthentic, invalid or failure. From

those results, any change of parameters makes the authentication fails and the decryption cannot

be done. In the simulation 3, the decryption process can succeed because both the key and the

file are not changed, but failed in through the authentication process.

4.3. Speed and Memory Usage Analysis

In this section, the decryption and encryption process perform on different devices. The purpose

of this experiment is to analyze the effect of memory and CPU capacity on the performance of

our proposed framework. The specifications of each device are described in the Table 3. The

results of the speed comparison of each device are shown in the Table 4. The symbolic meaning

of F1-E and F1-D are F1 (file 1), E (encryption time), and D (decryption time). The speed

comparison is measured in seconds.

Table 3. Devices Specification for Experiment

Device
Memory

Size (GB)
Processor Size

1 4 AMD APU(TM) A6-5200 @ 2.00GHz (4CPUs)

2 4 AMD Phenom(TM) II X2 550 @ 3.10GHz (2CPUs)

3 4 Intel(R) Core(TM) i5-3230M CPU @ 2.60GHz (2 CPUs)

4 8 Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz (2 CPUs)

5 8 Intel(R) Core(TM) i7-3537U CPU @ 2.00GHz (4 CPUs)

Table 4. The Speed Comparison on Encryption and Decryption Process

Device F1-E F1-D F2-E F2-D F3-E F3-D F4-E F4-D F5-E F5-D F6-E F6-D

1 0.025 0.009 0.027 0.026 0.112 0.087 0.098 0.091 0.466 0.462 1.332 1.223

2 0.021 0.016 0.023 0.170 0.275 0.266 0.276 0.262 1.405 1.349 3.753 3.641

3 0,040 0,015 0,137 0,147 0,176 0,757 0,138 0,289 0,622 0,601 1,488 2,644

4 0,034 0,024 0,017 0,003 0,180 0,056 0,058 0,052 0,314 0,284 0.885 0.743

5 0.016 0.008 0.015 0.020 0.067 0.055 0.066 0.056 0.313 0.282 0.819 0.739

Based on the analysis of Table 4, there is a time gap between decryption and encryption. It can

be occurred due to the RSA key decryption process to get AES keys in the manifest file. The

differences capacity of memory and processor are also very influential in the process of

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 10

decryption and encryption. There is a considerable time interval between each device. The file

size also greatly affects the length of processing time. Device 5 shows that though the size of F6

(48,690,172 Byte) is about 392 times from F1 (123,942 Byte). But the encryption time ratio of

F6-E (0.819 Sec) and F1-E (0.016 Sec) is about 51 times. We can conclude that the time

consumption is not linear with the file size. The file type does not significantly affect algorithm

speed. F1-D (image type) and F2-D (text type) present that the working time is almost the same.

Device 4 and 5 show that the amount of CPU core makes the speed of computation a little bit

faster, though the frequency of device 5 (2.00GHz) is lower than device 4 (2.30GHz). Device 3

and 4 present that bigger memory capacity can result in faster computing time.

5. Conclusion

We have built the digital signature and cryptography framework using SHA-256 as a hashing

process, AES as symmetric key, and RSA as the distribution of encryption keys. Based on the

experiment, encrypted file cannot be read or opened except by the corresponding way and the

right keys. It means the message confidentiality and the security of the file in the delivery

process can be guaranteed. The application system is very sensitive to the slightest changes,

either on the main file or the parameter file. It causes the process of decryption cannot be done.

Encryption and decryption can still be done if only the signature is changed, though the main

file and the keys are unchanged. But in the authentication process it shows that the signature

provided does not match to the original. Furthermore, the speed of the process is influenced by

several aspects, such as the file size and the device specifications.

REFERENCES

[1] P. Patil, P. Narayankar, N. D.G., and M. S.M., “A Comprehensive Evaluation of

Cryptographic Algorithms: DES, 3DES, AES, RSA and Blowfish,” Procedia Comput. Sci.,

vol. 78, no. Supplement C, pp. 617–624, 2016.

[2] H. Delfs and H. Knebl, Information Security and Cryptography: Principles and

Applications, Third. Verlag: Springer, 2015.

[3] S. Heron, “Advanced Encryption Standard (AES),” Netw. Secur., vol. 2009, no. 12, pp. 8–

12, 2009.

[4] U. Farooq and M. F. Aslam, “Comparative analysis of different AES implementation

techniques for efficient resource usage and better performance of an FPGA,” J. King Saud

Univ. - Comput. Inf. Sci., vol. 29, no. 3, pp. 295–302, 2017.

[5] P. Patel, R. Patel, and N. Patel, “Integrated ECC and Blowfish for Smartphone Security,”

Procedia Comput. Sci., vol. 78, no. Supplement C, pp. 210–216, 2016.

[6] J. Ó. Ruanaidh, H. Petersen, A. Herrigel, S. Pereira, and T. Pun, “Cryptographic copyright

protection for digital images based on watermarking techniques,” Theor. Comput. Sci., vol.

226, no. 1, pp. 117–142, 1999.

[7] N. R. Chandran and E. M. Manuel, “Performance Analysis of Modified SHA-3,” Procedia

Technol., vol. 24, no. Supplement C, pp. 904–910, 2016.

[8] K. V Pradeep and V. Vijayakumar, “Survey on the Key Management for Securing the

Cloud,” Procedia Comput. Sci., vol. 50, no. Supplement C, pp. 115–121, 2015.

[9] Q. H. Dang, “Secure Hash Standard (SHS),” Federal Inf. Process. Stds. (NIST FIPS) 180-

4, 2015.

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 11

[10] Sankalp Prakash and Mridula Purohit, “An Efficient implementation of PKI architecture

based Digital Signature using RSA and various hash functions (MD5 and SHA variants),”

IOSR J. Comput. Eng. , vol. 15, no. 6, pp. 27–33, 2013.

[11] V. R. Pallipamu, T. R. K, and S. V. P, “Design of RSA Digital Signature Scheme Using A

Novel Cryptographic Hash Algorithm,” vol. 4, no. 6, pp. 609–613, 2014.

[12] J. Nechvatal et al., “Report on the development of the Advanced Encryption Standard

(AES),” J. Res. Natl. Inst. Stand. Technol., vol. 106, no. 3, p. 511, 2001.

[13] E. Paulus, M. Suryani, and S. Hadi, “Improved Line Segmentation Framework for

Sundanese Old Manuscripts,” in the 2nd International Conference on Computing and

Applied Informatics, 2017.

