
Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 | 45 - 52

DATA SCIENCE
Journal of Computing and Applied Informatics

*Corresponding author at: Departemen Ilmu Komputer, Fakultas Ilmu Komputer dan Teknologi Informasi,

Universitas Sumatera Utara, Jl. Universitas No. 9-A, Kampus USU, Medan 20155, Indonesia
E-mail address: mandrib@usu.ac.id

Copyright © 2018 Published by Talenta Publisher
ISSN: 2580-6769 | e-ISSN: 2580-829X | DOI: 10.32734/jocai.v2.i1-91
Journal Homepage: https://talenta.usu.ac.id/JoCAI

Using random search and brute force algorithm in

factoring the RSA modulus

Mohammad Andri Budiman1 and Dian Rachmawati2

1,2Departemen Ilmu Komputer, Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Sumatera

Utara, Jl. Universitas No. 9-A, Kampus USU, Medan 20155, Indonesia

Abstract. The security of the RSA cryptosystem is directly proportional to the size of its

modulus, n. The modulus n is a multiplication of two very large prime numbers, notated as p

and q. Since modulus n is public, a cryptanalyst can use factorization algorithms such as

Euler’s and Pollard’s algorithms to derive the private keys, p and q. Brute force is an

algorithm that searches a solution to a problem by generating all the possible candidate

solutions and testing those candidates one by one in order to get the most relevant solution.

Random search is a numerical optimization algorithm that starts its search by generating one

candidate solution randomly and iteratively compares it with other random candidate solution

in order to get the most suitable solution. This work aims to compare the performance of

brute force algorithm and random search in factoring the RSA modulus into its two prime

factors by experimental means in Python programming language. The primality test is done

by Fermat algorithm and the sieve of Eratosthenes.

Keyword: RSA Modulus, Factorization, Random Search, Brute Force, Primality Test.

Abstrak. Tingkat keamanan sistem kunci publik RSA sangat tergantung pada besar

modulusnya, yaitu n. Semakin besar n, maka tingkat keamanan RSA semakin tinggi. Modulus

n adalah hasil perkalian dari dua buah bilangan prima yang sangat besar yang bersifat

privat, yang dinotasikan sebagai p dan q. Karena bersifat publik, modulus n dapat diketahui

oleh seorang kriptanalis, dan dengan menggunakan beberapa metode faktorisasi bilangan

bulat seperti metode faktorisasi Euler dan Pollard, ia dapat mengetahui nilai kunci privat p

dan q tersebut. Brute force adalah sebuah algoritma yang mencari solusi suatu

permasalahan dengan dengan membangkitkan seluruh kandidat solusi yang mungkin dan

menguji kandidat-kandidat solusi tersebut satu per satu untuk mengetahui yang mana yang

menghasilkan solusi yang paling relevan. Random search adalah sebuah algoritma optimasi

numerik yang memulai pencariannya dengan membangkitkan secara acak sebuah kandidat

solusi, dan secara iteratif membandingkannya dengan kandidat-kandidat solusi acak yang

lain untuk mengetahui yang mana yang paling mendekati solusi yang diinginkan. Penelitian

ini bertujuan untuk membandingkan performansi kedua algoritma tersebut dalam

memfaktorkan modulus RSA menjadi dua buah faktor primanya dengan menggunakan

pendekatan eksperimental dalam bahasa pemrograman Python. Uji keprimaan dilakukan

dengan algoritma Fermat dan algoritma saringan Eratosthenes.

Kata Kunci: Modulus RSA, Faktorisasi, Random Search, Brute Force, Uji Keprimaan.

Received 15 January 2018 | Revised 20 January 2018 | Accepted 28 January 2018

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 46

1. Introduction

The RSA cryptosystem was proposed by Ronald Rivest, Adi Shamir, and Leonard Adleman in

1978 [1]. It was amongst the first cryptosystems that implements the Diffie-Hellman key

exchange protocol [2]. The Diffie-Hellman key exchange protocol enables a sender of a message

(plaintext) to send the secret version of that message (ciphertext) via a channel without sending

any key (which is used to decrypt the ciphertext) via another channel. This is done by publishing

the key that is used to encrypt the message in a server or any other electronic means. Meanwhile,

the key that is used to decrypt the ciphertext is kept private. Both keys are generated by the

recipient of the message. The key that is used in the encryption process is called public key and

the key that is used in the decryption process is called private key.

The RSA has two public keys, which are n and e. n is the RSA modulus and e is the RSA exponent.

The RSA has four private keys, which are p, q, d, and Φ(n). The modulus n has a relation with p

and q, i.e., n = pq. p and q are very large prime numbers. Since n is published, anyone, including

cryptanalysts, can use some integer factorization algorithms to get the value of p and q. If any

cryptanalyst can obtain the value of p and q, the whole RSA cryptosystem may be compromised.

The problem of factoring an integer is considered hard on a classical computer [3]. A lot of

computational efforts are needed to do this, and the larger the integer to be factored, the time

increases exponentially [4]. Shor [3] has pointed out that integer factorization can be done in

polynomial time if quantum computer exists in the future. However, twenty years after Shor

published his paper, quantum computers are still under development and are not yet ready for

common use. Therefore, nowadays, a cryptanalyst can only factorize the RSA modulus in

exponential time using exact factorization algorithms such as Fermat’s difference of squares,

Euler’s, Brent’s, Kraitchik’s, or Pollard’s algorithms.

Rather than using the exact factorization algorithms as mentioned above, this study uses a

metaheuristic called random search to factor the RSA modulus. Metaheuristic is usually a

stochastic procedure [5], which is oftentimes nature-inspired [6]. It is devised to solve hard

optimization problems. Random search is the simplest form of metaheuristics [7]: it tries some

random candidate solutions until the best solution is found or until the allowed time is up. In order

to gain more perspectives, the performance of the random search is compared with the

performance of brute force algorithm. Brute force algorithm is an exhaustive search algorithm

that checks every possible candidate solutions one by one until it found the best solution

regardless of time. This work is performed in Python programming language. The primality

testing is done with the sieve of Eratosthenes and Fermat’s little theorem.

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 47

2. Method

In order to format a paragraph, authors (writer) can click on the appropriate style name in the style

toolbar. In this part, we describe the RSA cryptosystem, the Fermat’s little theorem, the sieve of

Eratosthenes, the brute force algorithm as well as the random search to factor the modulus, and

give the main part of the Python code that we use to implement the algorithms.

2.1. RSA cryptosystem

RSA cryptosystem can be used to protect confidentiality with its encryption scheme and also to

ensure authentication with its digital signature scheme. In this work, we are only interested in the

encryption scheme. There are three main parts of the RSA encryption which are as key generation,

encryption, and decryption which are explained as follows [1].

Key generation part is done by the recipient of the message. The steps are as follows.

1. Two large distinct prime numbers, named p and q are generated. This can be done by

generating two large odd integers, and test them with primality test algorithm such as

Fermat’s little theorem.

2. Compute the public key, n = pq.

3. Compute the totient, Φ(n) = (p – 1)(q-1).

4. Choose an odd integer e, so that gcd(Φ(n), e) = 1 and 1 < e < Φ(n).

5. Compute the private key, d, so that de ≡ 1 (mod Φ(n)). This can be done by testing the

value of d = 1 to d = Φ(n) that satisfies the equation or can also be done much faster by

extended Euclidean algorithm. The readers are invited to read [8] and [9].

6. The value of e and n are published, and the other remaining values are kept secret.

The encryption part is done by the sender of the message. The steps are the followings.

1. Let the message to be sent is m.

2. Obtain e and n.

3. Encrypt message m into ciphertext c, by computing c = me mod n.

4. Send c to the recipient.

The decryption part is done by the recipient. The steps are as follows.

1. Obtain c.

2. Decrypt the ciphertext c into message m, by computing m = cd mod n.

In this work, we are interested in factoring n into p and q by using brute force algorithm and

random search.

2.2. The Fermat’s little theorem

The Fermat’s little theorem is used to test whether or not an odd integer is a prime or a composite.

The theorem states that if p is a prime, then F = ap-1 mod p = 1 for 1 < a < p, where ‘a’ and ‘p’ are

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 48

integers and p is odd. [10]. Value of ‘a’ should be tested with many distinct values to avoid

Fermat’s liars [11]. A Fermat liar is a value of ‘a’ that causes F = 1, even though p is a composite.

Our Python code for the Fermat’s little theorem is as follows.

def Fermat(p):

 trial = len(str(p)) * 3

 for i in range(trial):

 if pow(rnd(2, p - 1), p - 1, p) != 1:

 return False

 return True

In this code, we try the Fermat’s little theorem with some values of a three times the digits of p.

If, for example, p = 2333, then the digits of p is 4, so we try the Fermat’s little theorem 4 * 3 = 12

values of a. If all a’s result in F = 1, then we conclude that p is prime.

2.3. The sieve of Eratosthenes

The sieve of Eratosthenes is an ancient algorithm to generate the table of prime numbers from 2

to up to a specific bound [12]. The algorithm works by assuming all the numbers from 2 to that

bound to be primes, and then ‘sieving’ the composites by striking out (or eliminating) the

multiples of the first primes up until the squares root of the bound. Our Python code for the sieve

of Eratosthenes is as follow.

def GeneratePrimeTable(start, stop):

 isPrime = {}

 isPrime[1] = False

 for i in range(2, stop + 1):

 isPrime[i] = True

 for i in range(2, int(math.ceil(math.sqrt(stop)) + 1)):

 if isPrime[i]:

 for j in range(i, int(math.ceil((stop)/i) + 1)):

 isPrime[i * j] = False

 primes = []

 count = 0

 for i in range(start, stop + 1):

 if isPrime[i]:

 count += 1

 primes.append(i)

 return primes

The function GeneratePrimeTable(start, stop) tabulates all prime numbers from start to stop with

the sieve of Eratosthenes and returns them as a set.

2.4. The brute force algorithm

Brute force is an approach which searches a solution to a problem by generating and testing all

the possible candidate solutions. The most relevant candidate solution is then returned. Because

this algorithm generates and tests all of the possible candidate solution, the brute force algorithm

is also called exhaustive search or generate and test algorithm. Its time performance is the lowest

of all other algorithms, but it is guaranteed to find the most relevant solution for a discrete

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 49

problem, and therefore, brute force is often used as a baseline [13] to compare other algorithms.

Our brute force implementation in Python is as follows.

def BruteForce(n):

 #get RSA private keys with brute force algorithm

 primes = GeneratePrimeTable(1, int(math.ceil(math.sqrt(n))))

 for p in primes:

 if n % p == 0:

 return p, n // p

The function BruteForce(n) takes n (the RSA modulus), and generates the prime numbers from 1

to the square root of n as candidate solutions, and check whether n is divisible by one of this prime

numbers by checking it one by one. The function returns two values, which are the values of the

RSA private keys, p and q.

2.5. The random search

The random search is the most rudimentary example of metaheuristics [7]. Random search

generates and checks some random candidate solutions until the allotted time is up, the best (or,

sometimes, just good enough solution) is found, or the other stop criteria is met. Our Python code

implementation of the random search is as follows.

max_time = 10

LIMIT = 10 ** (len(str(n)) // 2 + 1)

p = getRandomPrime(1, LIMIT)

q = getRandomPrime(1, LIMIT)

best = [p, q]

start = time.time()

while True:

 p = getRandomPrime(1, LIMIT)

 q = getRandomPrime(1, LIMIT)

 S = [p, q]

 if delta(S) < delta(best):

 best = S

 if delta(best) == 0.0:

 print "success"

 print S

 print "running time =", time.time() - start, "secs"

 break

 if time.time() - start > max_time:

 print "time's up"

 break

3. Results and Discussions

In factoring the RSA modulus with random search, we limit the computation to 10 seconds. If

there are no suitable p and q are found in ten seconds, it simply prints “time’s up”. Otherwise, the

value of p and q are returned.

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 50

Figure 1. Factoring n = 187 with random search

Figure 1 shows that random search needs 84 explorations to factor n = 187 into p = 11 and q =

17. The running time needed is 0.00374317169189 seconds.

Figure 2. Factoring n = 913 with random search

Figure 2 shows that random search needs 554 explorations to factor n = 913 into p = 11 and q =
83. The running time needed is 0.0202369689941 seconds.

Figure 3. Factoring n = 14041 with random search

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 51

Figure 3 shows that random search needs 24988 explorations to factor n = 14041 into p = 739 and

q = 19. The running time needed is 1.27728009224 seconds.

We conduct a test to factor n = 557009 with the random search and the algorithm fails to find the

factors within the given time limit (10 seconds).

The result of RSA modulus factorization with brute force is tabulated as follows.

Table 1. Factoring RSA modulus with brute force algorithm

n p * q number of searches time (seconds)

187 11 * 17 5 0.00344800949097

913 11 * 83 5 0.00358390808105

14041 19 * 739 8 0.004469871521

557009 653 * 853 119 0.00167393684387

9192907 937 * 9811 159 0.00201606750488

37675201 3907 * 9643 540 0.0139532089233

17614895377 40559 * 434303 4252 0.117401838303

599855115407 694789 * 863363 56166 0.712327957153

4684589242027 837533 * 5593319 66714 1.99000310898

6833740248499 2565161 * 2664059 187492 2.51408982277

91063247464523 2577907 * 35324489 188371 8.69724798203

From Table 1, it can clearly be seen that brute force algorithm runs significantly faster than

random search algorithm. For example, to factor n = 14041, brute force algorithm only needs

0.004469871521seconds, while random search needs 1.27728009224 seconds. In this experiment,

brute force algorithm can also factor up until n = 91063247464523 (14 digits or 47-bit RSA

modulus). Meanwhile, random search can only factor up until n = 14041 (5 digits or 14-bit RSA

modulus).

4. Conclusion

From our experiment, it can be concluded that random search is not a suitable candidate to factor

the RSA modulus n into its respective private keys, p and q. Random search can only factor small

sizes of n (14-bit) and runs significantly slower than the brute force algorithm as it needs too

many explorations in which random candidate solutions are generated and tested without proper

order. In contrast, brute force algorithm can factor 47-bit n within time limit of ten seconds.

However, in the real world, the RSA usually needs more than 1024-bit modulus to perform

securely. Thus, we can only assert that brute force algorithm is an appropriate candidate as a

baseline for comparing with other factorization algorithm such as Pollard’s and Brent’s

algorithms, but not to be used to factor RSA with very large modulus.

Acknowledgments

We gratefully acknowledge that this research is funded by Lembaga Penelitian Universitas

Sumatera Utara. The support is under the research grant TALENTA USU of Year 2017 Contract

Number : 5338/UN5.1.R/PPM/2017.

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 1, 2018 52

REFERENCES

[1] Rivest, Ronald L., Adi Shamir, and Leonard Adleman. “A method for obtaining digital

signatures and public-key cryptosystems.” Communications of the ACM 21.2, pages: 120-

126. 1978

[2] Diffie, Whitfield, and Martin Hellman. "New directions in cryptography." IEEE

transactions on Information Theory 22.6, pages: 644-654. 1976

[3] Shor, Peter W. "Algorithms for quantum computation: Discrete logarithms and

factoring." Foundations of Computer Science, 1994 .Proceedings., 35th Annual

Symposium on. Ieee, 1994.

[4] Band, Yehuda B., and Y. Avishai. Quantum mechanics with applications to

nanotechnology and information science. Academic Press, 2013.

[5] Siarry, Patrick. Metaheuristics. Springer, 2016.

[6] Bianchi, Leonora, Marco Dorigo, Luca Maria Gambardella, and Walter J. Gutjahr. “A

survey on metaheuristics for stochastic combinatorial optimization.” Natural

Computing 8.2, pages: 239-287. 2009

[7] Luke, Sean. Essentials of metaheuristics: a set of undergraduate lecture notes. Lulu Com,

2013.

[8] Shantz, Sheueling Chang. “From Euclid's GCD to Montgomery multiplication to the great

divide.” 2001.

[9] Wang, Xinmao, and Victor Y. Pan. “Acceleration of Euclidean algorithm and rational

number reconstruction.” SIAM Journal on Computing 32.2, pages: 548-556. 2003

[10] Smyth, Chris J. “A coloring proof of a generalisation of Fermat's Little Theorem.” The

American Mathematical Monthly 93(6) , pages:469-471. 1986

[11] Bach, Eric, and Andrew Shallue. "Counting composites with two strong

liars." Mathematics of Computation 84.296, pages: 3069-3089.2015

[12] Mateos, Luis A. “Dynamical Sieve of Eratosthenes.” arXiv preprint arXiv, pages:1206-

2791. 2012.

[13] Lin, Jimmy. "Brute force and indexed approaches to pairwise document similarity

comparisons with MapReduce." Proceedings of the 32nd international ACM SIGIR

conference on Research and development in information retrieval. ACM, 2009.

