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Abstract. The security of the RSA cryptosystem is directly proportional to the size of its 

modulus, n. The modulus n is a multiplication of two very large prime numbers, notated as p 

and q. Since modulus n is public, a cryptanalyst can use factorization algorithms  such as 

Euler’s and Pollard’s algorithms to derive the private keys, p and q. Brute force is an 

algorithm that searches a solution to a problem by generating all the possible candidate 

solutions and testing those candidates one by one in order to get the most relevant solution. 

Random search is a numerical optimization algorithm that starts its search by generating one 

candidate solution randomly and iteratively compares it with other random candidate solution 

in order to get the most suitable solution. This work aims to compare the performance of 

brute force algorithm and random search in factoring the RSA modulus into its two prime 

factors by experimental means in Python programming language. The primality test is done 

by Fermat algorithm and the sieve of Eratosthenes. 
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Abstrak. Tingkat keamanan sistem kunci publik RSA sangat tergantung pada besar 

modulusnya, yaitu n. Semakin besar n, maka tingkat keamanan RSA semakin tinggi. Modulus 

n adalah hasil perkalian dari dua buah bilangan prima yang sangat besar yang bersifat 

privat, yang dinotasikan sebagai p dan q. Karena bersifat publik, modulus n dapat diketahui 

oleh seorang kriptanalis, dan dengan menggunakan beberapa metode faktorisasi bilangan 

bulat seperti metode faktorisasi Euler dan Pollard, ia dapat mengetahui nilai kunci privat p 

dan q tersebut. Brute force adalah sebuah algoritma yang mencari solusi suatu 

permasalahan dengan dengan membangkitkan seluruh kandidat solusi yang mungkin dan 

menguji kandidat-kandidat solusi tersebut satu per satu untuk mengetahui yang mana yang 

menghasilkan solusi yang paling relevan. Random search adalah sebuah algoritma optimasi 

numerik yang memulai pencariannya dengan membangkitkan secara acak sebuah kandidat 

solusi, dan secara iteratif membandingkannya dengan kandidat-kandidat solusi acak yang 

lain untuk mengetahui yang mana yang paling mendekati solusi yang diinginkan. Penelitian 

ini bertujuan untuk membandingkan performansi kedua algoritma tersebut dalam 

memfaktorkan modulus RSA menjadi dua buah faktor primanya dengan menggunakan 

pendekatan eksperimental dalam bahasa pemrograman Python. Uji keprimaan dilakukan 

dengan algoritma Fermat dan algoritma saringan Eratosthenes. 

Kata Kunci: Modulus RSA, Faktorisasi, Random Search, Brute Force, Uji Keprimaan. 
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1. Introduction 

The RSA cryptosystem was proposed by Ronald Rivest, Adi Shamir, and Leonard Adleman in 

1978 [1]. It was amongst the first cryptosystems that implements the Diffie-Hellman key 

exchange protocol [2]. The Diffie-Hellman key exchange protocol enables a sender of a message 

(plaintext) to send the secret version of that message (ciphertext) via a channel without sending 

any key (which is used to decrypt the ciphertext) via another channel. This is done by publishing 

the key that is used to encrypt the message in a server or any other electronic means. Meanwhile, 

the key that is used to decrypt the ciphertext is kept private. Both keys are generated by the 

recipient of the message. The key that is used in the encryption process is called public key and 

the key that is used in the decryption process is called private key.  

The RSA has two public keys, which are n and e. n is the RSA modulus and e is the RSA exponent. 

The RSA has four private keys, which are p, q, d, and Φ(n). The modulus n has a relation with p 

and q, i.e., n = pq. p and q are very large prime numbers. Since n is published, anyone, including 

cryptanalysts, can use some integer factorization algorithms to get the value of p and q. If any 

cryptanalyst can obtain the value of p and q, the whole RSA cryptosystem may be compromised.  

The problem of factoring an integer is considered hard on a classical computer [3]. A lot of 

computational efforts are needed to do this, and the larger the integer to be factored, the time 

increases exponentially [4]. Shor [3] has pointed out that integer factorization can be done in 

polynomial time if quantum computer exists in the future. However, twenty years after Shor 

published his paper, quantum computers are still under development and are not yet ready for 

common use. Therefore, nowadays, a cryptanalyst can only factorize the RSA modulus in 

exponential time using exact factorization algorithms such as Fermat’s difference of squares, 

Euler’s, Brent’s, Kraitchik’s, or Pollard’s algorithms.  

Rather than using the exact factorization algorithms as mentioned above, this study uses a 

metaheuristic called random search to factor the RSA modulus. Metaheuristic is usually a 

stochastic procedure [5], which is oftentimes nature-inspired [6]. It is devised to solve hard 

optimization problems. Random search is the simplest form of metaheuristics [7]: it tries some 

random candidate solutions until the best solution is found or until the allowed time is up. In order 

to gain more perspectives, the performance of the random search is compared with the 

performance of brute force algorithm. Brute force algorithm is an exhaustive search algorithm 

that checks every possible candidate solutions one by one until it found the best solution 

regardless of time. This work is performed in Python programming language. The primality 

testing is done with the sieve of Eratosthenes and Fermat’s little theorem. 
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2. Method 

In order to format a paragraph, authors (writer) can click on the appropriate style name in the style 

toolbar. In this part, we describe the RSA cryptosystem, the Fermat’s little theorem, the sieve of 

Eratosthenes, the brute force algorithm as well as the random search to factor the modulus, and 

give the main part of the Python code that we use to implement the algorithms. 

2.1. RSA cryptosystem  

RSA cryptosystem can be used to protect confidentiality with its encryption scheme and also to 

ensure authentication with its digital signature scheme. In this work, we are only interested in the 

encryption scheme. There are three main parts of the RSA encryption which are as key generation, 

encryption, and decryption which are explained as follows [1]. 

Key generation part is done by the recipient of the message. The steps are as follows. 

1. Two large distinct prime numbers, named p and q are generated. This can be done by 

generating two large odd integers, and test them with primality test algorithm such as 

Fermat’s little theorem. 

2. Compute the public key, n = pq. 

3. Compute the totient, Φ(n) = (p – 1)(q-1). 

4. Choose an odd integer e, so that gcd(Φ(n), e) = 1 and 1 < e < Φ(n). 

5. Compute the private key, d, so that de ≡ 1 (mod Φ(n)). This can be done by testing the 

value of d = 1 to d = Φ(n) that satisfies the equation or can also be done much faster by 

extended Euclidean algorithm. The readers are invited to read [8] and [9].  

6. The value of e and n are published, and the other remaining values are kept secret. 

The encryption part is done by the sender of the message. The steps are the followings. 

1. Let the message to be sent is m. 

2. Obtain e and n.  

3. Encrypt message m into ciphertext c, by computing c = me mod n. 

4. Send c to the recipient. 

The decryption part is done by the recipient. The steps are as follows. 

1. Obtain c. 

2. Decrypt the ciphertext c into message m, by computing m = cd mod n. 

In this work, we are interested in factoring n into p and q by using brute force algorithm and 

random search. 

2.2. The Fermat’s little theorem  

The Fermat’s little theorem is used to test whether or not an odd integer is a prime or a composite. 

The theorem states that if p is a prime, then F = ap-1 mod p = 1 for 1 < a < p, where ‘a’ and ‘p’ are 
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integers and p is odd. [10]. Value of ‘a’ should be tested with many distinct values to avoid 

Fermat’s liars [11]. A Fermat liar is a value of ‘a’ that causes F = 1, even though p is a composite. 

Our Python code for the Fermat’s little theorem is as follows. 

def Fermat(p): 

 trial = len(str(p)) * 3 

 for i in range(trial): 

  if pow(rnd(2, p - 1), p - 1, p) != 1: 

   return False 

 return True 

 

In this code, we try the Fermat’s little theorem with some values of a three times the digits of p. 

If, for example, p = 2333, then the digits of p is 4, so we try the Fermat’s little theorem 4 * 3 = 12 

values of a. If all a’s result in F = 1, then we conclude that p is prime. 

2.3. The sieve of Eratosthenes  

The sieve of Eratosthenes is an ancient algorithm to generate the table of prime numbers from 2 

to up to a specific bound [12]. The algorithm works by assuming all the numbers from 2 to that 

bound to be primes, and then ‘sieving’ the composites by striking out (or eliminating) the 

multiples of the first primes up until the squares root of the bound.  Our Python code for the sieve 

of Eratosthenes is as follow.  

def GeneratePrimeTable(start, stop): 

 isPrime = {} 

 isPrime[1] = False 

 for i in range(2, stop + 1): 

  isPrime[i] = True 

 for i in range(2, int(math.ceil(math.sqrt(stop)) + 1)): 

  if isPrime[i]: 

   for j in range(i, int(math.ceil((stop)/i) + 1)): 

    isPrime[i * j] = False 

 primes = [] 

 count = 0 

 for i in range(start, stop + 1): 

  if isPrime[i]: 

   count += 1 

   primes.append(i) 

 return primes 

 

The function GeneratePrimeTable(start, stop) tabulates all prime numbers from start to stop with 

the sieve of Eratosthenes and returns them as a set. 

2.4. The brute force algorithm  

Brute force is an approach which searches a solution to a problem by generating and testing all 

the possible candidate solutions. The most relevant candidate solution is then returned. Because 

this algorithm generates and tests all of the possible candidate solution, the brute force algorithm 

is also called exhaustive search or generate and test algorithm. Its time performance is the lowest 

of all other algorithms, but it is guaranteed to find the most relevant solution for a discrete 
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problem, and therefore, brute force is often used as a baseline [13] to compare other algorithms. 

Our brute force implementation in Python is as follows. 

def BruteForce(n): 

 #get RSA private keys with brute force algorithm 

 primes = GeneratePrimeTable(1, int(math.ceil(math.sqrt(n)))) 

 for p in primes: 

  if n % p == 0: 

   return p, n // p 

The function BruteForce(n) takes n (the RSA modulus), and generates the prime numbers from 1 

to the square root of n as candidate solutions, and check whether n is divisible by one of this prime 

numbers by checking it one by one. The function returns two values, which are the values of the 

RSA private keys, p and q. 

2.5. The random search  

The random search is the most rudimentary example of metaheuristics [7]. Random search 

generates and checks some random candidate solutions until the allotted time is up, the best (or, 

sometimes, just good enough solution) is found, or the other stop criteria is met. Our Python code 

implementation of the random search is as follows. 

max_time = 10 

LIMIT = 10 ** (len(str(n)) // 2 + 1) 

 

p = getRandomPrime(1, LIMIT) 

q = getRandomPrime(1, LIMIT) 

 

best = [p, q]  

 

start = time.time() 

 

while True: 

 p = getRandomPrime(1, LIMIT) 

 q = getRandomPrime(1, LIMIT) 

 S = [p, q] 

 if delta(S) < delta(best): 

  best = S 

 if delta(best) == 0.0: 

  print "success" 

  print S 

  print "running time =", time.time() - start, "secs" 

  break  

 if time.time() - start > max_time: 

  print "time's up" 

  break 

 

3. Results and Discussions  

In factoring the RSA modulus with random search, we limit the computation to 10 seconds. If 

there are no suitable p and q are found in ten seconds, it simply prints “time’s up”. Otherwise, the 

value of p and q are returned. 
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Figure 1. Factoring n = 187 with random search 

 

Figure 1 shows that random search needs 84 explorations to factor n = 187 into p = 11 and q = 

17. The running time needed is 0.00374317169189 seconds. 

Figure 2. Factoring n = 913 with random search 

 

Figure 2 shows that random search needs 554 explorations to factor n = 913 into p = 11 and q = 
83. The running time needed is 0.0202369689941 seconds. 

Figure 3. Factoring n = 14041 with random search 
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Figure 3 shows that random search needs 24988 explorations to factor n = 14041 into p = 739 and 

q = 19. The running time needed is 1.27728009224 seconds. 

We conduct a test to factor n = 557009 with the random search and the algorithm fails to find the 

factors within the given time limit (10 seconds).  

The result of RSA modulus factorization with brute force is tabulated as follows. 

Table 1. Factoring RSA modulus with brute force algorithm 

n p * q number of searches time (seconds) 

187 11 * 17 5 0.00344800949097 

913 11 * 83 5 0.00358390808105 

14041 19 * 739 8 0.004469871521 

557009 653 * 853 119 0.00167393684387 

9192907 937 * 9811 159 0.00201606750488 

37675201 3907 * 9643 540 0.0139532089233 

17614895377 40559 * 434303 4252 0.117401838303 

599855115407 694789 * 863363 56166 0.712327957153 

4684589242027 837533 * 5593319 66714 1.99000310898 

6833740248499 2565161 * 2664059 187492 2.51408982277 

91063247464523 2577907 * 35324489 188371 8.69724798203 

From Table 1, it can clearly be seen that brute force algorithm runs significantly faster than 

random search algorithm. For example, to factor n = 14041, brute force algorithm only needs 

0.004469871521seconds, while random search needs 1.27728009224 seconds. In this experiment, 

brute force algorithm can also factor up until n = 91063247464523 (14 digits or 47-bit RSA 

modulus). Meanwhile, random search can only factor up until n = 14041 (5 digits or 14-bit RSA 

modulus). 

4. Conclusion 

From our experiment, it can be concluded that random search is not a suitable candidate to factor 

the RSA modulus n into its respective private keys, p and q. Random search can only factor small 

sizes of n (14-bit) and runs significantly slower than the brute force algorithm as it needs too 

many explorations in which random candidate solutions are generated and tested without proper 

order. In contrast, brute force algorithm can factor 47-bit n within time limit of ten seconds. 

However, in the real world, the RSA usually needs more than 1024-bit modulus to perform 

securely. Thus, we can only assert that brute force algorithm is an appropriate candidate as a 

baseline for comparing with other factorization algorithm such as Pollard’s and Brent’s 

algorithms, but not to be used to factor RSA with very large modulus.  
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