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Abstract
Background: Damage to the spinal cord is the pathological condition known as spinal cord injury (SCI) or
spinal cord injury. This ailment, which not only causes neurological impairments but also places a
significant psychological and social burden on patients, has grown to be one of the most challenging
worldwide health issues. A successful stem cell-based treatment has just been created and could be the
answer to this medical issue. It has been demonstrated that iPSC-dNSC stem cells are efficient at both
reducing post-traumatic inflammatory conditions and kicking off neuronal cell regeneration at the location
of SCI lesions.
Methods: The aim of this study to investigate the the effectiveness of using iPSC in spinal cord injury. This
study used the literature review method by discovering articles using the search engine Google Scholar,
and PubMed. According to the search results, 413 articles were obtained in accordance with the title of the
study, but 8 articles met the inclusion criteria in this study.
Result: The findings of this study showed that the iPSC methodology was applied, as well as the advantages
and results of the procedure. Using iPSCs to treat SCI is still challenging and needs additional investigation.
Discussion: Several method developments in the use of iPSCs produce varying degrees of difficulty and
benefits, such as increasing the ability of SCI to regenerate through the use of Engineered iPSCs using the
3D Neuronal Networks method, Electroactive Scaffolds with the biomaterial encapsulation of NSCs
method, pluripotent stem cell transplantation in acute thoracic spinal cord injury with the administration of
LCTOPC, and combination the methods
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Introduction

The majority of spinal cord injuries (SCI) in people are contusions that, after an initial
traumatic event, cause the vertebral column to dislocate. White matter around the central
cavitation created by these wounds is diffuse and spared. The "primary" and "secondary" phases
of SCl are divided into two parts. SCI entails a lot of interaction between different immunological
cells, CNS cells that are already there, and noncellular elements in order to mount inflammatory,
immune, and scar tissue responses that result in extensive tissue destruction, cyst formation, scar
tissue formation, Wallerian degeneration, and Schwannosis (such as adhesion molecules,
cytokines, and chemokines) [1]. The majority of data on the pathophysiology of SCI has come
from experimental SCI in animal models and stereotyped responses to traumatic brain damage.
Even though experimental SCI has been the subject of a plethora of research, nothing is known
about how human SCI develops. There is evidence that although there may be fundamental
similarities, there may also be variations that are fundamental, such as the size and significance
of astrocytic responses and demyelination. [2].

Cellular transplantation strategies include replacing lost endogenous neuronal and/or glial
cells, providing a better growth environment to obstruct or neutralize inhibitory molecules, and
enhancing and directing any intrinsic neuronal regenerative capacity. These strategies aim to
address the pathophysiology of SCI. [3,4,5,6]. (Fig. 1). In experimental SCI, mesenchymal stem
cells, glial progenitors, olfactory ensheathing glial cells, and Schwann cells have historically been

employed. Each of these cell types has the capacity to change how they look or behave. [7].

SCI Pathology Stem Cell Transplant
* Oedema & ischemia * Remyelination
* Influx of macrophages * Provide trophic support

* Free radical release & lipid peroxidation - * Reduce cell death
* Widespread neuronal & glial cell death * Reduce astrogliosis
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* Demyelination
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* Neuronal regeneration
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Figure 1 Stem cell transplantation for SCI. The pathophysiology of SCI
is intended to be lessened by stem cell transplantation by restoring lost
native cells and functions. The local milieu and microenvironment are also
impacted, which improves neuronal plasticity and promotes functional
recovery.

The delayed loss of myelinating oligodendrocytes is a different problem that might
benefit from cellular transplantation. By replacing myelinating oligodendrocytes, damage can be
contained and function can be restored. Donor oligodendrocyte precursor cells (OPCs) or a

combination of neural stem/precursor cell transplants can do this. OPC transplantation has been
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found to have a specific influence on the maturation of OPCs into mature oligodendrocytes, which
can increase myelination by up to 50% and is connected to enhancements in locomotor
performance. [8,9,10,11,12,13,14,15]

On the other hand, it is challenging to create significant quantities of pure human OPCs
or brain stem/progenitor cells (which can give rise to OPCs). In order to obtain large quantities of
donor OPCs that are challenging to obtain from adult stem cell sources, it is advantageous to use
embryonic stem cell (ESC) lines that can differentiate into neural or glial lineages (16). Donors
and recipients must, however, be immunologically compatible because embryonic cell lines are
not genetically identical to the patient, and adequate immunosuppressive drugs, which are known
to have adverse long-term effects, must be employed. [17]

Additionally, there is a moral controversy surrounding the usage of ESCs [18,19,20,21].
Cell fusions and somatic cell nuclear transfer (SCNT) are other sources of pluripotent stem cells
[22,23,24,25,26,27]; These procedures, however, create ethical concerns because they are
technically challenging, inefficient, expensive, and reliant on donor oocytes. Additionally,
mitochondrial DNA is still of maternal origin even though they can produce cells with cloned
nuclear DNA, which may be enough to cause immunological rejection [28].

The discovery that somatic adult cells may be dedifferentiated (or "reprogrammed") back
into an ESC-like form has been a crucial turning point in clinical regenerative research. [29,30].
Simple, non-invasive approaches can be used to create human iPSCs, which can then be used as
an autograft to produce OPCs or other desired cells from adult tissues. This is anticipated to reduce
host immunological reactivity. iPSCs provide potential remedies for these problems. [31,32,33].
Recent research has shown that iPSCs can consistently differentiate into multiple neural lineages.
iPSC technology offers a promising new alternative to cell-based therapy for several CNS
illnesses, including SCI. Although there have been ethical debates about iPSCs, [34,35,36,37],
The use of autologous transplants, which may reduce rejection complications, and moral issues
that are inextricably linked to the use of human ESCs are among the solutions provided by iPSC
technology.

Element "reprogramming” is used to make iPSCs in order to preserve pluripotency and
self-renewal [38,39,40,41,42,43,44]. Using octamer-binding transcription factor 3/4, mouse
embryonic fibroblasts (MEFs) were used to produce the first iPSCs. (oct3/4), region that
determines sex Krippel-like factor (kIf-4), Y-box 2 (sox2), and c-myc [29]. Due to their inability
to create living chimeric mice, which would have served as a real indication of pluripotency, the
initial attempts created iPSCs that were only partially reprogrammed in comparison to the current
norm. The field established protocols with various reprogramming variables quite fast and soon
enhanced them (importantly, the oncogene c-myc was shown to be dispensable) [45,46], iPSC
clone selection procedures (improved selection markers like nanog and oct3/4 [47,48,49] as
opposed to F-box protein 15 (fbx15) [29] or no selection at all [50] started to make premium
completely pluripotent. Rats are one of the many animals with whom this has now been
accomplished [51,52], humans [53,30], pigs [54,55,56], sheep [57], horses [58], non-human
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primates [59,60,61], and threatened animals [62].

Patients with the horrible neurological condition SCI, which results in the loss of both
sensory and motor functions, are severely physically limited. Therapeutic interventions that
partially restore function can greatly enhance patients' quality of life. Unfortunately, there are no
therapeutic approaches available today that allow for a significant functional recovery after SCI.
Human iPSC-based transplantation therapy may provide patients with SCI new hope. [63-65]. In
fact, it has been shown that hiPSC-derived NSCs or NPCs continue to survive and grow into
neurons and glial cells in the injured spinal cord following transplantation. [66—68]. This study

aimed to investigate the the effectiveness of using iPSC in spinal cord injury.

Methods

The free papers on the internet were examined as part of the systematic review of
the literature on iPSC in spinal cord injury. The recommended reporting items for
systematic review and meta-analysis statement (PRISMA) 2020 standards were followed
for reporting the findings of these research.

Inclusion and exclusion: Hafiz Ramadhan reviewed identified citations' titles and
abstracts for potential inclusion in the review and searched out the full texts of any pertinent
works. The search's inclusion criteria were freely available, published articles and electronic
articles from January 2021 to August 2022 about the use of iPSCs in spinal cord injury research
worldwide. These comprised publications from original research and reviews (systematic review
or narrative review). Studies published before 2021 and works written in languages other than
English were disqualified.

Study selection: Two steps of article selection were completed. Based on the inclusion
criteria and search phrases, the titles and abstracts of all resources were initially evaluated. The
content of the chosen titles and abstracts was then reviewed for potential answers to the review
questions. The researcher eliminated irrelevant abstracts before retrieving the complete texts of
the chosen abstracts. In the second stage, whole articles were evaluated to find components
pertinent to the review's goals. Similar to the first stage, the whole articles were examined to
ensure that they satisfied the review's goals. As indicated in Figure 1, the PRISMA flow diagram

was used to pick the articles.
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Figure 2. PRISMA screening

Search strategy and information sources: To find papers on iPSC in spinal cord injury
that had been published during the previous year, a through search was first undertaken to find
primary studies, reviews, and grey literature. In order to refresh the literature review before the
final analysis and writing were completed, this period was extended until August 2022. In order
to conduct the search, various electronic databases were used (PubMed, and Google Scholar).
Based on search terms, the search strategy was created. During the literature search, the keywords
(iPSC, Spinal, Cord, Injury) and associated terms were combined using boolean operators (or,
and).

Data extraction: Articles were disqualified if they weren't pertinent, omitted information
about iPSC in spinal cord injury and the review's goals, or had publication dates outside of January
2021-August 2022. Then, pertinent publications were evaluated in order to respond to the review
questions. The following study characteristics are taken directly from publications: author name,
study title, year of study, method of iPSC used, kelebihan, and results obtained from the study in
question. The search results were controlled, and the complete articles' collected data was logged
in Microsoft Word.

Quality appraisal: All openly available qualitative and quantitative studies that were
released during the search period were evaluated for quality. Studies that were included were
evaluated for relevance. The quality assessment did not result in the removal of any studies.

Data analysis: Variables related to the year of publication, the number of studies, the
complications represented in the study, the scientific article, and the case report or series they

were grouped into were subjected to descriptive analysis.
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Results and Discussion

Eight studies in all will be examined. You can find some information in Table 1 including

the author, the title, the iPSC technique utilized, the benefits of the method employed, and the

outcomes of the iPSC method used in the research.

Table 1. Studies examining methods of iPSC
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The ethical issues of using embryonic stem cells are resolved by creating artificially
induced pluripotent stem cells (iPSC) from adult somatic cells. In preclinical models of SCI, a
number of teams, including our own, have examined the transplant of iPSC-derived cells. Similar
to ESC, many studies choose to treat SCI with NSC produced from iPSC. For instance, Fujimoto
and colleagues demonstrated that in a mouse acute model of thoracic SCI, iPSC-NSC have a
therapeutic potential equivalent with NSC obtained from human fetal spinal cord. The iPSC-NSC
group also demonstrated improved remyelination and axon regeneration, as well as maintained
endogenous neurons' survival. Through the rebuilding of the corticospinal tract, which restored
broken neural circuitry in a relay fashion, the recovery of motor function was aided. Additionally,
these writers used particular diphtheria toxin cell ablation techniques. When the animals with the
transplants were given diphtheria toxin after the recovery of motor function was noticed, as was
expected, the animals' condition deteriorated, proving that the transplanted cells were responsible
for the recovery [77].

According to the literature review, several method developments in the use of iPSCs
produce varying degrees of difficulty and benefits, such as increasing the ability of SCI to
regenerate through the use of Engineered iPSCs using the 3D Neuronal Networks method,
Electroactive Scaffolds with the biomaterial encapsulation of NSCs method, pluripotent stem cell
transplantation in acute thoracic spinal cord injury with the administration of LCTOPC, and
combination the methods. HiPSC-NS/PC transplantation with regulation by DREADD, hiPSC-
NS/PC transplantation with injection of C5a receptor antagonists, and transplantation of hiPSCs
with purification of iPSCs utilizing Nestin+Cells by fluorescence-activated cell sorting all result in

increased locomotor function capacity. However, other techniques, such as the transplanting of
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human iPSC-derived NPCs, still provide fewer meaningful findings as a result of the short research

duration.

Conclusion

Despite being used at the pre-clinical stage, the use of iPSC in the treatment of SCI is
regarded as one of the most promising treatments since it has a noticeable impact. As a result,

employing iPSCs to treat SCI is still difficult and calls for more research.
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