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Abstract. Self-Organizing Map (SOM) is an unsupervised artificial neural network 

algorithm. Even though this algorithm is known to be an appealing clustering method, many 

efforts to improve its performance are still pursued in various research works. In order to 

gain faster computation time, for instance, running SOM in parallel had been focused in many 

previous research works. Utilization of the Graphics Processing Unit (GPU) as a parallel 

calculation engine is also continuously improved. However, total computation time in 

parallel SOM is still not optimal on processing large dataset. In this research, we propose a 

combination of Dynamic Parallel and Hyper-Q to further improve the performance of parallel 

SOM in terms of faster computing time. Dynamic Parallel and Hyper-Q are utilized on the 

process of calculating distance and searching best-matching unit (BMU), while updating 

weight and its neighbors are performed using Hyper-Q only. Result of this study indicates an 

increase in SOM parallel performance up to two times faster compared to those without using 

Dynamic Parallel and Hyper-Q. 
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Abstrak. Self-organizing map (SOM) adalah sebuah algoritma jaringan syaraf tiruan tanpa 

supervisi. Namun demikian, meskipun algoritma ini dikenal sebagai metode klustering yang 

menjanjikan, banyak upaya yang telah dilakukan untuk memperbaiki kinerjanya yang 

dilakukan di berbagai penelitian. Untuk memperoleh waktu komputasi lebih cepat misalnya, 

para peneliti terdahulu berfokus pada upaya menjalankan SOM secara paralel. 

Pemanfaatan Graphics Processing Unit (GPU) sebagai mesin perhitungan paralel juga 

semakin membaik. Akan tetapi, waktu komputasi keseluruhan pada SOM paralel masih saja 

dirasa belum optimal dalam pemrosesan dataset yang besar. Dalam penelitian ini, penulis 

mengusulkan satu kombinasi pendekatan Dynamic Parallel dan Hyper-Q untuk lebih 

meningkatkan kinerja SOM paralel dalam hal kecepatan waktu komputasi. Dynamic Parallel 

dan Hyper-Q dimanfaatkan pada proses perhitungan jarak dan pencarian best-matching unit 

(BMU), sementara perbaikan bobot dan tetangga sekelilingnya dilakukan hanya dengan 

menggunakan Hyper-Q. Hasil studi ini menunjukkan bertambahnya kinerja paralel SOM 

hingga dua kali lebih cepat dibandingkan dengan tanpa menggunakan Dynamic Parallel dan 

Hyper-Q. 
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1. Introduction 

Self-Organizing Map is popularly used to complete classification and clustering on a dataset. 

Clustering on the dataset is performed by training the weight of data until its value becomes equal 

to its input [1]. The first step of SOM is to map the dataset into a set of nodes that are placed on 

topographic maps of a certain dimension. Training on SOM is intended to find similarity between 

input nodes and output nodes on a competitive basis. The closest similarity between the input 

node and the output node is called the best-matching unit (BMU). Furthermore, the node that was 

selected as the BMU will pull other nodes in the surrounding neighbors to become closer by 

changing the value of the weight [2]. Finding BMU nodes is an exhaustive process by calculating 

and comparing distances between the input nodes and the output nodes on the topographic maps. 

The amount of time spent in finding BMU on large-dimension topographic maps are significantly 

affect the overall computing time of the clustering process, compared to those in small-

dimensional topographic maps [3]. 

Many efforts to obtain optimal computing time had been pursued in many research works, 

especially in the process of looking for BMU on large datasets. Faster method has been achieved 

by performing the process of finding BMU and updating the weights in parallel. While early 

parallel computing uses parallel technology on the CPU, further development of parallel 

computing is currently focused on the use of GPUs that have more parallel computing units[4]. 

Nowadays, the emergence of the OpenCL and CUDA frameworks bring many parallel computing 

functions to improve GPU utilization as a general-purpose computing engine known as the 

General Purpose Graphics Processor Unit (GPGPU) [5]. 

The development of nVidia technology invented the Kepler generation GPU with the ability of 

Dynamic Parallel [6] and Hyper-Q [7]. Both of these capabilities yield a more concurrent 

computing and efficiency in utilizing GPU. The work in this study tries to get parallel SOM 

performance improvement using Dynamic Parallel (DP) and Hyper-Q (HQ). The combination of 

DP and HQ is used in finding BMU and updating weight. 

This paper is structured as follows. In section 2 we present a brief overview of some previous 

research works. Section 3 briefly introduced the Dynamic Parallel and Hyper-Q approaches used 

in this research. Section 4 presents the proposed methodology, continued by result and discussion 

in section 5. Section 6 as the last section provides the conclusion and future work of this study. 

2. Previous Research 

Previous research works on enhancing SOM have successfully utilized CPU parallelization. The 

development of computational technology is now directing parallel SOM research by utilizing 

GPU usage. The utilization of GPU as architecture in parallel SOM had been presented in various 

researches works (see for examples [3, 8, 9]), whereby the process of finding BMU and updating 
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weights was executed in three kernels. The three kernels perform the task of calculating the 

Euclidean distance, finding the BMU using parallel reduction and updating neighbor weights. 

Another parallel SOM architecture [10, 11] were implemented by dividing the calculation into 

two kernels, the first kernel calculates the Euclidean distance and finds the BMU and the second 

kernel updates the neighbor weights. Yet another architecture works were using one kernel to 

calculate Euclidean distance and find BMU, while neighbor weight update was performed on the 

CPU [12]. 

Experiments to reduce computational time are also conducted with a combination of common 

methods used in SOM, such as network partition and data partition methods that are run in parallel 

[11]. Another method that is also utilized is parallel reduction as a solution to reduce 

computational time [13]. Other methods such as coarse-grain buffer and fine-grain buffer are also 

used to reduce computing time of distance calculation and finding BMU [8]. 

Other improvements are also made to the weight update. How to find neighboring nodes around 

BMU using the technique performed by [10] can also reduce computational time. Utilizing 

streams and shared memory usage has also managed to improve the parallel performance of SOM 

[8, 12]. 

Utilization of Dynamic Parallel (DP) and Hyper-Q (HQ) technology on Kepler generation has 

also been conducted by [6] in some experiments which perform several algorithms recursively, 

resulting varying results. The effect of DP performance depends on the number of thread 

divergences contained in the algorithm [13]. Hyper-Q utilization is deployed to improve 

performance and efficiency by running processes concurrently on the GPU. Improved 

performance with Hyper-Q utilization that runs those processes simultaneously adds a record of 

success in its application [14]. 

3. Dynamic Parallel and Hyper-Q Approaches 

The ability to perform parallelization dynamically (Dynamic Parallelism) developed by nVidia 

has allowed GPU to freely build a work mechanism within one of its processes. Configuration as 

well as usage of threads created is performed by GPU alone with no CPU intervention (see Figure 

1a). 

Dynamic parallelization of the nVidia GPU allowing one kernel process calls another different 

kernel process. This recursive call could not be performed on previous GPU generation. Using 

Dynamic Parallel, CPU usage becomes lower, allowing the CPU to be utilized by another process.  

Another features belongs to nVidia GPU is the ability to perform CPU instruction in parallel. 

Simultaneously, Hyper-Q performs CPU commands to be executed in GPU. Theoretically, 
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Hyper-Q reduces delayed computation time by exchanging utilization of resources in GPU. Using 

Hyper-Q, usage of each stream could be optimized [15] (see Figure 1b). 

 

Figure 1. nVidia Dynamic Parallel and Hyper-Q 

4. Methodology 

The architecture proposed in this study is to find BMU and to update weight using Dynamic 

Parallel (DP) and Hyper-Q (HQ). Finding BMU is performed on the GPU consists of 3 kernels 

running on the device wrapped in DP and HQ. An update of the neighboring weights is performed 

on a kernel that runs concurrently using HQ (Figure 2). 

4.1. Finding BMU 

Dynamic Parallel (DP) and Hyper-Q (HQ) allow kernel to run concurrently on the GPU. The DP 

structure allows the kernel to run in other kernels [6]. The use of HQ utilizes parallel paths on the 

host (CPU) in order to run concurrently on the device (GPU) kernel [7]. Finding BMU in the 

parallel SOM in this study is divided into 3 kernels. 

The first kernel calculates the distance between the input nodes and the output nodes using the 

Euclidean distance. In these kernel weights of the input and output nodes are kept into two arrays. 

The sum resulted from the first kernel process is stored in a new array. In order for a kernel 

execution to run properly, the use of blocks and threads should be appropriate. In this kernel the 

block used is one, with the number of threads as many as the maximum number of threads per 

block device. 

The result of calculating Euclidean distance is continued in the second kernel using Parallel 

Reduce Interleaved Address method. This method is selected because it can complete the 

summation in the array [16]. In this second kernel the number of threads used is the same as the 

number of data features. The numbers of blocks used are determined by finding the largest 

multiplier value factor of the number of threads used, which is divisible by the number of array 

elements from the Euclidean distance calculation results. 
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Figure 2. Parallel SOM Architecture 

Algorithm 1 illustrates how to find BMU by comparing elements of arrays. The sum of the arrays 

is calculated using the Parallel Reduce Interleaved Address method. This method stores the result 

in the array element of index 0 and the next index value is multiple of the number of data features. 

The next step is to get the BMU value in the array that has been summed from the previous kernel. 

The approach used is to compare the array element of index 0 with the next index specified. 

Arrangement of array elements is performed by modifying the Parallel Reduce Interleaved 

Address method. Modifications are made by adding 2 step parameters. The first step parameter is 

to find the vector position of the array element; the second step parameter looks for the y 

coordinate position of the array element. The lowest value of the benchmark result is used as a 

temporary BMU value to compare with the BMU value in the next process. 
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The problem with large array calculations is the limited number of threads that can be used; the 

array calculation can not be performing entirely simultaneously. This problem can be solved by 

setting the array index numbering during kernel execution. Determination of array index 

numbering is performed by dividing the number of array elements, which is a multiplication of 

number of blocks and thread per block used in the kernel. 

Another problem arising from simultaneous kernel calling is that each of the executed kernels 

precedes each other which are called race condition [17]. In the comparison process that occurs 

in the third kernel, the race condition event can affect the results of finding BMU. Solution to this 

problem is by synchronizing the kernel and thread. Synchronization in the kernel and the thread 

is required to ensure the threads are completing the entire process before the next command. 

4.2. Updating Neighborhoods 

BMU obtained from the previous process is continued by neighbor updates. Searching 

neighbor nodes of BMU from previous method are performed by comparing distance 

coordinates between BMU nodes and another nodes contained in topographic maps, one 

by one. The result of calculating both coordinate distances which is less than the radius 

map value (rm) is the neighboring node to be updated. This research proposes another 

way to shorten the searching for neighbor nodes. The proposed way to determine 

minimum and maximum coordinates of x and y could be seen in Equations (1)-(2) and 

Equations (3)-(4), respectively. 

 

min 𝑋 = {
𝑏𝑚𝑢. 𝑋 − 𝑟𝑚,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
0,               𝑏𝑚𝑢. 𝑋 − 𝑟𝑚 < 0

    (1) 



Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 2, 2018                                                          68 

max 𝑋 = {
𝑏𝑚𝑢. 𝑋 + 𝑟𝑚,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑚𝑎𝑥. 𝑋,      𝑏𝑚𝑢. 𝑋 + 𝑟𝑚 > 𝑚𝑎𝑥. 𝑋

   (2) 

min 𝑌 = {
𝑏𝑚𝑢. 𝑌 − 𝑟𝑚,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
0,                𝑏𝑚𝑢. 𝑌 − 𝑟𝑚 < 0

    (3) 

min 𝑌 = {
𝑏𝑚𝑢. 𝑌 + 𝑟𝑚,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑚𝑎𝑥. 𝑌,       𝑏𝑚𝑢. 𝑌 + 𝑟𝑚 > 𝑚𝑎𝑥. 𝑌

   (4) 

The following algorithm 2 illustrates how to find the neighboring node. 

 

Nodes found from search results are then copied into an array. The SOM parameters used in 

calculations such as input nodes, learning rate and gaussian neighbor function are copied into 

each array. Each of these arrays is then passed on the kernel update weights to be calculated. The 

results obtained from the calculation of the kernel are then stored into topographic maps using the 

same algorithm in searching neighbor nodes around the BMU above. 

4.3. Experimental Setup 

Data used in this experiment were taken from Kaggle data provider. The amount of data and 

features varies. Further information from the dataset are shown in Table 1. 

Table 1. Dataset Experiment 

Dataset Data Rows Attributes 

Credit Card Fraud Detection 250,000 16 

Individual Tax Income Statistics 160,000 32 

30 Years of European Solar Generation 200,000 64 

 

SOM parameters and experiments evaluation carried out are shown in Table 2. SOM parameters 

testing are using topographic maps sizes of 100x100, 200x200 and 300x300 with the number of 

iterations as many as 100. The number of inputs on each test consisting of 3, 4 and 5 input vectors. 

Measurement of this experimental performance are calculated by capturing total computational 

time using Dynamic Parallel (DP) and Hyper-Q (HQ) and without using DP and HQ. From the 

total computation time then the calculated speed up is obtained. 

 

Table 2. SOM Experiment Parameters 

Map Size Input Vector Iteration Learn Rate Measurement 
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100x100 

200x200 

300x300 

3, 4, 5 100 0.4 Total time and Speed up 

The experiments were performed on a PC equipped with an Intel i3-1460 processor, 8 GB of 

RAM. GPU used in this experiment using Kepler Nvidia GT 720, 2 GB of RAM. 

5. Result and Discussion 

The experiments were performed on three datasets divided into two parts, the first part was an 

experiment without using Dynamic Parallel (DP) and Hyper-Q (HQ) and the second part was an 

experiment using DP and HQ. Experiments without the use of DP and HQ are conducted by 

calculating the average computation time of the three kernels that consist of the distance 

calculation kernel, the addition kernel and the comparative kernel, and a weight update kernel. 

The total amount of computational time in finding BMU and updating weight is the overall 

computational time of the experiment without the use of DP and HQ. Experiment using DP and 

HQ is using two kernels. The first kernel finds the BMU and the second kernel update weights. 

The overall computational time of this experiment is the sum of the computation time for the two 

kernels. This experiment runs as many as 100 iterations with an initial learning rate of 0.4. 

The first experiment on the Credit Card Fraud Detection dataset uses the SOM experimental 

parameters as in Table 2. The results of recording computational time of the three kernels in the 

experiment without using DP and HQ with 100x100 map dimensions using input vectors 3, 4 and 

5 have slightly different time results, similar to the 200x200 topographic map using input vectors 

3, 4 and 5. While 300x300 topographic map with input vectors 3, 4 and 5 also get a time result 

that is not much different. This means that the three input vectors do not significantly affect the 

computation time. The weight update kernel gets relatively low computation time on each size of 

the topographic map using the three input vectors. This shows the computation time of the low-

load kernel computing reduces the computational time of the three previous kernels above. 

Experiments using DP and HQ on topographic maps with dimensions of 100x100 using input 

vectors 3, 4 and 5 recorded lower time than without using DP and HQ. The same thing happens 

on topographic maps with dimensions of 200x200 and 300x300 using three input vectors. It means 

that by using DP and HQ, computing time is slightly better than without using DP and HQ. In the 

update weights kernel using DP and HQ get lower computational times than without using DP 

and HQ. The visible improvement of the experiments on the Credit Card Fraud Detection dataset 

achieves the first improvement assumption. 

The second experiment on the Individual Income Tax Statistics dataset also uses SOM 

experimental parameters presented in Table 2. The results of recording computational time of the 

three kernels in the experiment without using DP and HQ with 100x100 map dimensions using 

input vectors 3, 4 and 5, as well as on the 200x200 dimension map and 300x300 dimensioned 
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map with three input vectors are not obtained much time different compared to what was done in 

the first experiment. This also happens to the kernel update weights that get a computational time 

lower than the total time of the three kernels above. In the second experiment without using the 

DP and HQ it gets the same pattern as the first experiment. The second experiment using DP and 

HQ on topographic maps of 100x100, 200x200, 300x300 dimension using input vectors 3, 4 and 

5 recorded better computation time from experimental results without using DP and HQ. In the 

update weights kernel using DP and HQ are also getting lower computational times compared to 

those without using DP and HQ. The visible improvement of the experiments on the Individual 

Income Tax Statistics dataset achieves a second improvement assumption. 

The third experiment on the 30 Years of European Solar Generation dataset also uses SOM 

experimental parameters in Table 2. The results of recording computational time of the three 

kernels in the experiment without using DP and HQ with 100x100 map dimensions using input 

vectors 3, 4 and 5, as well as on the 200x200 dimension map and 300x300 dimensioned map with 

three input vectors not obtained much different computation time as was the case in the second 

experiment. Likewise in the update weights kernel, calculated computation time is lower than the 

total time of the three experimental kernels without using DP and HQ. The third experiment using 

DP and HQ on topographic maps of 100x100, 200x200, 300x300 dimension using input vectors 

3, 4 and 5 recorded better computation time results compared to those experimental results 

without using DP and HQ. In the contrary, in the updating weights kernel using DP and HQ, a 

lower computation time is also calculated compared to those without using DP and HQ. This third 

experiment is also seen the same increases as the first and second experiments before. 

The three experimental results obtained are shown in Figure 3. Bar graph shows experiments 

without using DP and HQ and the line graph shows experiments using DP and HQ. The trend of 

increase in computational time without and using DP and HQ tends to go up linearly in terms of 

map size and number of vector inputs. The larger the amount of data, the more computation time 

is required. In the case of topographic map of 100 x 100, the computational time difference based 

on the number of vector inputs did not change significantly. While on the topographic map 

measuring 200x200 and 300x300 the number of vector inputs indicates the influence. 
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Figure 3. Overall Computation Time and Speed Up 

The result of the parallel SOM computing time of the three experiments using different datasets 

as shown in Figure 3 shows that the overall computing time of the experiment using and without 

using Dynamic Parallel (DP) and Hyper-Q (HQ) increases linearly based on the map dimension 

and the number of input vectors used. On a 100x100 topographic map the effect of the input vector 

does not create a significant time difference. The same also happens on topographic map 

dimension of 200x200 where the input vector has little influence on the overall computation time. 

While on topographic map of dimension of 300x300 the amount of input vectors are affecting the 

whole computation time. 

The line graph shown in the Figure 3 is the overall computational time of SOM parallel using DP 

and HQ, while the bar graph shows the overall computational time of SOM parallel without using 

DP and HQ. The line graph trajectory shows the amount of time that a parallel SOM generates 

using DP and HQ. The intersections of the line graph and bar graph show the center of the bar 

graph. This means that the parallel SOM using DP and HQ gets half the computation time faster 

than the parallel SOM without using DP and HQ. 

6. Conclusion and Future Work 

The proposed parallel SOM architecture using Dynamic Parallel and Hyper-Q in this paper was 

conducted by running the kernel to find the BMU that wraps the three child kernels into a parent 

kernel. The combination of Dynamic Parallel and Hyper-Q on finding the BMU and weights 

update shows a good performance improvement. The results of this experiment add some 
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contributions to the improvement of parallel SOM performance, whereby experiments with the 

combination of Dynamic Parallel and Hyper-Q could lower overall computational time on large 

dimensional datasets. 

Further work of this research could be directed to combining other parallel patterns such as stencil, 

map, shuffle with new architecture and big data problems. 
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