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Abstract. The effect of the addition of a bis(triethoxysilylpropyl) tetra sulphide or TESPT-

silane coupling agent on torque properties and degree of filler dispersion of silica-filled 

compounds of natural rubber (NR), epoxidized natural rubbers with 25% mole of 

epoxidation (ENR 25) and epoxidized natural rubbers with 50% mole of epoxidation (ENR 

50) were investigated. All the rubbers were filled by silica filler at a fixed loading (30.0 

parts per hundred rubber, phr) and the TESPT was added to each silica-filled rubbers 

compounds at 1.0phr. It was found that TESPT affected the torque properties of all the 

silica-filled rubbers compounds. The TESPT decreased the minimum torque of NR system 

but increased the minimum torque of ENRs systems and maximum and torque differences 

of the all rubbers systems. The minimum torque was decreased from 0.61 to 0.53 dN.m for 

NR; were increased from 0.23 to 0.49 dN.m for ENR 25 and from 0.07 to 0.34 dN.m for 

ENR 50.It was also found that the TESPT acted as an internal plasticizer for NR which 

improved the degree of silica dispersion. Presumably, for the ENRs, the TESPT acted as an 

additional cross linker with a more pronouncedly which poorer the degree of silica 

dispersion.  
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Abstrak. Pengaruh penambahan suatu bahan bis(triethoxysilylpropyl) tetrasulphide atau 

bahan penggandeng TESPT terhadap sifat-sifat tork dan derajad penyerakan pengisi dari 

kompon-kompon terisi silika dari karet alam (KA), karet-karet alam terepoksidasi 25 

persen mol (KAT 25) dan 50 persen mol (KAT 50). Kesemua jenis karet tersebut terisi 

silica dengan kadar 30.0 bagian per seratus bagian karet, bsk) dan TESPT ditambahkan 

kemasing-masing kompon-kompon karet terisi silica dengan kadar 1.0 bsk. Ditemukan 

bahwa TESPT berpengaruh kepada sifat-sifat tork dari semua jenis kompon karet terisi 

silica tersebut. TESPT menurunkan tork minimum dari sistim KA tetapi menaikkan tork 

minimum sistim-sistim KAT, tork maksimum dan selisih tork dari kesemua sistim karet. 

Tork minimum turun dari 0.61 ke 0.53 dN.m untuk KA; naik dari 0.23 ke 0.49 dN.m untuk 

KAT 25 dan dari 0.07 ke 0.34 dN.m untuk KAT 50. Diketemukan juga, TESPT bertindak 

sebagai bahan pemplastik internal untuk KA yang meningkatkan derajad penyerakan 

silika. Diasumsikan untuk KAT 25 dan KAT, TESPT bertindak lebih sebagai bahan 

penyambungsilang tambahan yang menurunkan derajad penyerakan silika. 
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1 Introduction 

It is very common in rubber technology utilising reinforcing fillers in producing rubber products 

with a satisfactory level of life service and strength [1]. Besides carbon blacks (CBs), silicas of 

varying forms and particles-sizes have been widely used as reinforcing fillers in rubber industry 

nowadays. Generally, the properties of silica-reinforced rubbers are usually inferior to those of 

CBs, even when they are of comparable size [2]. It is due to the apparent dissimilarity of surface 

chemistry of both of them. Each type of filler produces useful rubber properties as a result of its 

specific surface chemistry. However, due to the polar nature and relatively inert nature of its 

surface, silica provides a unique combination of tear strength, abrasion and age resistances and 

also adhesion properties [3]. 

The main application of silica is in product where black colour is not a requirement e.g. shoe 

soles [4]. It is also used, in combination with CB, in chip-and cut-resistance tyres for 

earthmovers and mining vehicles. Due to the presence of numerous silanol groups on its 

surface, silica is a highly polar material and can readily interact with zinc oxide during curing. 

The silica bound zinc unable to activate the accelerator. Consequently, zinc activity reduced, the 

sulphur reaction is retarded [5]. 

The surface properties of silica cause several difficulties in using it as reinforcing filler, 

particularly in hydrocarbon rubbers such as natural rubber (NR). The surface of silica is highly 

polar and hydrophilic as the presence of numerous silanol groups. These silanol groups 

relatively incompatible with NR, and interaction between them is weak. On the other hand, the 

silica particles tend to interact with each other to form aggregates. Since the silica to NR 

interaction weaker than the silica to silica interaction; the results are the formation of large 

agglomerates, poor dispersion of silica [1]. 

Organosilanes are utilized to improve silica to rubber interaction of the silica-filled rubbers and 

consequently enhance the reinforcing effect of the silica [6]. Organosilanes are reactive 

additives, and usually utilized in a small quantity, less than 2 phr [7]. The organosilanes modify 

the surface of silica [8]. The modified silica provides a chemically active surface that can 

participate in vulcanization, providing coupling bonds between organosilane and both the silica 

and the rubber phases [9]. There is much evidence [10] confirming the existence of such bonds. 

In all these cases marked improvement in rubber properties was noted [11].  

This study reports the effort in improvement in degree of filler dispersion of silica filled-natural 

and epoxidized natural rubbers through the use of a commercial coupling agent. The 
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bis(triethoxysilylpropyl) tetra sulphide or TESPT silane coupling agent was chosen as the 

commercial coupling agent. 

2 Experimental 

2.1 Materials 

NR grade SMR-L was obtained from Guthrie (M) Sdn. Bhd., Seremban, Malaysia, and 

epoxidized natural rubber with 25 and 50 moles% epoxidation (ENR 25 and ENR 50) were 

supplied by the Rubber Research Institute Malaysia (RRIM). Other compounding ingredients, 

such as sulphur, zinc oxide, stearic acid, N-isopropyl-N'-phenyl-p-phenylenediamine (IPPD), 

precipitated silica, benzothiazolyldisulfide (MBTS) and TESPT were supplied by the rubber lab 

of Universiti Sains Malaysia (USM), Malaysia. 

2.2 Compounding 

A semi-efficient vulcanisation system was applied for the compounding. The compounding 

procedure was performed on a two-roll mill (Model XK-160). Table 1 displays the compound 

formulation of silica-filled rubbers compounds without and with TESPT. 

Table 1. The formulation of silica-filled rubbers compounds without and with TESPT 

Ingredients Control (phr)* With TESPT (phr)* 

SMR-L, ENR 25 or ENR 50 100.0 100.0 

ZnO 5.0 5.0 

Stearic acid 2.0 2.0 

IPPD 2.0 2.0 

MBTS 1.5 1.5 

Silica 30.0 30.0 

TESPT 0.0 1.0 

*parts per hundred rubber 

2.3 Torque properties 

The torque properties were obtained through the cure characteristics test of the silica-filled 

rubbers compounds using a Monsanto Moving Die Rheometer (MDR 2000), which was 

employed to determine the minimum torque (ML), maximum torque (MH) and torque difference 

(MH - ML), according to ISO 3417. Samples of the respective silica-filled rubbers compounds 

were tested at 150oC. 
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3 Results and Discussion 

3.1 The torque properties of silica-filled NR and ENRs compounds  

The minimum torques of silica-filled NR, ENR25 and ENR 50 compounds without and with 

TESPT are shown in Fig. 1. The one phr-TESPT additions into each control compounds 

affected the minimum torque. The minimum torque of ENRs with TESPT was higher compared 

to their control ones, whilst the minimum torque of NR with TESPT was lower compared to its 

control compound. The minimum torque reflects both the filler-filler agglomeration and 

viscosity of a rubber compound [12]. A lower minimum torque indicates a lower viscosity and 

weaker filler to filler interaction [1]. For NR; the TESPT decreased the minimum torque and 

hence, causing easier the effort in dispersing the silica filler. In this case, the TESPT could be 

considered as an internal plasticizer for NR. 

 

Figure 1. The effect of TESPT on the minimum torque of silica-filled SMR-L and 

ENRs compounds. 

The enhancement in minimum torque for the ENRs most probably was due to the formation of 

some premature crosslinks during compounding. The ENRs are active/polar rubbers due to the 

presence of epoxy groups on their molecules. The TESPT is also an active ingredient for ENRs, 

especially. Presumably, the epoxy groups and TESPT interacted and reacted chemically that 

formed another type of crosslink. In this case, the TESPT could be considered as a curative 

agent for the ENRs. 

Fig. 2 shows the maximum torques of silica-filled NR, ENR25 and ENR 50 compounds without 

and with TESPT. The TESPT affected the maximum torque. The maximum torque of all the 

rubber compounds was higher compared to their control ones. The maximum torque correlates 

to the measurement of stock modulus [13] which was increased in this case. It was attributed to 
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the improvement of rubber to filler interaction. The TESPT could be considered as a 

compatibilizer for the silica-filled NR and ENRs compounds.  

 

Figure 2. The effect of TESPT on maximum torque of silica-filled SMR-L and ENRs 

compounds. 

 

Figure 3 shows the torque difference (maximum torque minus minimum torque) of the three 

types of silica-filled rubbers compounds without and with TESPT. The TESPT increased the 

torque difference. At a similar silica loading, the torque differences of ENRs were higher than 

that of NR. It was due to ENRs to silica interaction which formed silanol-epoxy bond, as 

visualised in Scheme 1 [14]. Presumably, this type of interaction increased the crosslink density 

of the ENRs systems. The torque difference value is used to indicate the degree of crosslink 

density of a rubber compound [13]. A greater value indicates a higher degree of crosslink 

density.  

 

= Si-OH+H2C–CH–  = SiOCH2CH–  (Scheme 1) 

  ǀ  ǀ ǀ 

  O   OH  

 (Silanol group)  (Epoxy group)       (Silanol-epoxy bond) 

 

The torque difference of ENR 50 was higher compared to ENR 25. It was due to a more epoxy 

groups of ENR 50 and as a consequence, the crosslink density of ENR 50 was higher also. 

As discussed previously, the TESPT increased the degree of crosslink density of the silica-filled 

NR and ENRS compounds. It was due to the additional function of the TESPT, as an internal 

plasticizer agent, for NR compound which plasticized and softened the filled NR compound. 

This resulted in decreasing in viscosity and improvement in process ability of the silica 

dispersion and NR to silica interaction, respectively. The NR to silica interaction can be 
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considered as additional physical crosslink, and together with sulphide crosslinks contribute to 

total crosslink density [13]. 

 

Figure 3. The effect of TESPT on torque difference of silica-filled SMR-L and ENRs 

compounds. 

The TESPT further increased the crosslink density through the formation of some chemical 

bonds of between TESPT and silanol-epoxy. Presumably, the hydroxyl groups of intermediate 

silanol-epoxy reacted with TESPT formed some new additional crosslink [15]. 

At a similar TESPT loading, the torques differences of ENRs were higher than that of NR; the 

ENR 50 possessed the highest torque difference when compared to the NR and ENR 25. It was 

due to the highest degree of sulphide, physical and additional crosslinks altogether of ENR 50. 

3.2 The degree of silica dispersion of NR and ENRs compounds 

Based on the torques properties as shown in Figs. 1-2, especially; the degree of silica dispersion 

in the three types of rubbers compounds, due to the addition of TESPT, were determined using 

Equation (1) [16]. 

L  =ηr - mr      (1) 

where: ηr= [MLf/ MLg], and mr= [MHf/ MHg]; where MLf and MHf were the minimum and the 

maximum torques of the filled compounds; and MLg and MHg were the minimum and the 

maximum torques of the gum or unfilled rubber compound. A lower value of L, at a particular 

silica loading, means a better degree of silica dispersion. 

The L values of silica in the rubbers systems are shown in Fig. 4. As can be seen, The L value 

of NR with TESPT was lower compared to NR without TESPT; whilst the ENRs with TESPT 

had higher L values compared to ENRs without TESPT. For NR, it was due to the plasticizing 

effect of TESPT on the NR. The TESPT decreased viscosity and hence, improved degree of 
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silica dispersion. For ENRs, it was due to the additional cross linker effect of TESPT which 

some formed additional cross links to the ENRs -silica systems and hence, increased their L 

values. 

 

Figure 4. The effect of TESPT on L value of silica-filled SMR-L and ENRs 

compounds. 

4 Conclusions 

TESPT decreased the minimum torque of silica-filled natural rubber compounds but increased 

the minimum torques of silica-filled epoxidized natural rubbers compounds. TESPT also 

increased the maximum torque and torque difference of the silica-filled natural and epoxidized 

natural rubbers compounds. The plasticizing and compatibilization effects of TESPT were more 

pronounced to silica-filled natural rubber compounds whilst the curative effect of TESPT was 

more pronounced to silica-filled epoxidized natural rubbers compounds. 
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