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Abstract. Non-negative Matrix Factorization is an iteration optimization algorithm. ie to 
decipher one matrix into several non-negative component matrices. Non-negative Matrix 
Factorization (FMN) serves to obtain a picture of non-negative data. There is a problem in 
the Non-negative Matrix Factorization that is optimization at the constraint boundary, where 
in the optimization solution on the constraint boundary it is necessary to do long iteration and 
of course very difficult and conquers a long time. Quadratic Programing is an approach to 
solving linear optimization problems where the constraint is linear function and its purpose 
function is the square of the decision variable or multiplication of the two decision variables. 
This method is considered to be an effective method to overcome the optimization in the 
Non-negative Matrix Factorization. 

Keyword: Nonnegative Matrix, Matrix Factorization, Quadratic Programming 

Abstrak. Faktorisasi Matriks Non-negatif adalah algoritma optimasi iterasi. yaitu 
menguraikan satu matriks menjadi beberapa matriks komponen non-negatif. Faktorisasi 
Matriks Non-negatif (FMN) berfungsi untuk memperoleh gambaran data non-negatif. 
Terdapat permasalahan pada Faktorisasi Matriks Non Negatif yaitu optimasi pada batas 
batasan, dimana dalam penyelesaian optimasi pada batas batasan perlu dilakukan iterasi 
yang panjang dan tentunya sangat sulit serta memakan waktu yang lama. Quadratic 
Programing merupakan suatu pendekatan penyelesaian masalah optimasi linier yang 
kendalanya berupa fungsi linier dan fungsi tujuannya adalah kuadrat variabel keputusan 
atau perkalian kedua variabel keputusan. Metode ini dinilai merupakan metode yang efektif 
untuk mengatasi optimasi pada Faktorisasi Matriks Non-negatif. 

Kata Kunci: Matriks Nonnegatif, Faktorisasi Matriks, Pemrograman Kuadrat. 
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1 Introduction 

Non-negative Matrix Factorization is an iteration optimization algorithm. ie to decipher one 

matrix into several non-negative component matrices. Given the 𝑛𝑛𝑛𝑛𝑛𝑛 data of the integer V matrix 
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data with 𝑉𝑉𝑖𝑖𝑖𝑖 > 0and the positive integer 𝑟𝑟 < min (𝑛𝑛,𝑛𝑛) the non-negative matrix factorization 

obtains 2 (two) non-negative matrices 𝑊𝑊 ∈ 𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛 and 𝐻𝐻 ∈ 𝑅𝑅𝑛𝑛𝑛𝑛𝑟𝑟 like: 

𝑉𝑉  ≈  𝑊𝑊 𝐻𝐻 

If each column V is refresentative on an object; non-negative matrix factorization approximates 

it with linear combination of r base column W. Conventional approach to obtain W and H by 

minimizing the difference between 𝑉𝑉 𝑎𝑎𝑛𝑛𝑎𝑎 𝑊𝑊𝐻𝐻: 

min f
𝑊𝑊,𝐻𝐻

(𝑊𝑊,𝐻𝐻) =
1
2
���𝑉𝑉𝑖𝑖𝑖𝑖 − (𝑊𝑊𝐻𝐻)𝑖𝑖𝑖𝑖�

2
𝑟𝑟

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 𝑊𝑊𝑖𝑖𝑖𝑖 ≥ 0,𝑊𝑊𝑏𝑏𝑖𝑖 ≥ 0,∀ 𝑖𝑖,𝑎𝑎, 𝑠𝑠, 𝑠𝑠 

2 Preliminaries 

2.1.  Non-negative matrix 

The non-negative matrix is a real or integer matrix 𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖� where for each element on A is a 

non-negative number (equal to zero or greater than zero). 

2.2  Matrix Factorization 

Matrix factorization is the process of breaking or decomposition of a matrix into several matrices. 

In the Matrix Non-negative matrix V mxn with 𝑣𝑣𝑖𝑖𝑖𝑖 ≥ 0, it will be decomposed into two non-

negative matrices 𝑊𝑊 ∈ 𝑎𝑎𝑛𝑛𝑎𝑎  𝐻𝐻 ∈ 𝑅𝑅𝑟𝑟𝑛𝑛𝑛𝑛 with 𝑟𝑟 < 𝑛𝑛𝑖𝑖𝑛𝑛 (𝑛𝑛,𝑛𝑛) such that: 

                                                 𝑉𝑉  ≈  𝑊𝑊 𝐻𝐻 (1) 

As an explanation of Matrix Factorization by using Non Negative Matrix Factorization, Given a 

𝑉𝑉𝑟𝑟𝑛𝑛𝑛𝑛 matrix, NMF will decipher the matrix V to be: 

𝑉𝑉𝑟𝑟𝑛𝑛𝑛𝑛  ≈  𝑊𝑊𝑟𝑟𝑛𝑛𝑛𝑛  𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛 

where W and H are matrices with non-negative entries. 

2.3.  Condition of Karush-Kuhn-Tucker 

In 1951 Kuhn Tucker proposed an optimization technique that could be used to search the 

optimum point of a constrained function. Karush Kuhn Tucker method can be used to find the 

optimum solution of a function regardless of the nature of the function whether linear or non 

linear. 

2.4.  Quadratic Programing 

Quadratic Programing is an approach to solving linear optimization problems where constraints 

are linear functions and their objective function is the square of decision variables or 

multiplication of two decision variables (1) 
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min 𝑓𝑓(𝑛𝑛) = 𝐶𝐶𝑇𝑇 𝑋𝑋 +
1
2
𝑋𝑋𝑇𝑇𝑄𝑄𝑋𝑋 + 𝑎𝑎 

with constraints : 𝐴𝐴𝑋𝑋  ≤  𝐵𝐵,𝑋𝑋 ≥ 0 

When the objective function f (x) is the perfect convex for all regions it is reasonable to obtain a 

point which is a local and also a global minimum. So in such conditions it ensures that Q is a 

positive definite. 

2.5.  Successive Quadratic Programming 

Quadratic sequential programming method (SQP) is a very powerful and popular method class 

for solving nonlinear programming problems, especially those with strong nonlinear boundaries 

(3) 

3 Results and Discussion 

3.1.  Non-Linear Program 

In the application of linear programming, the important assumption to be fulfilled is that all 

functions are linear. This is what then gave birth to a new concept of nonlinear programming 

problems. According to (1) the general form of nonlinear programming is finding the value of 

𝑛𝑛 = (𝑛𝑛1 , 𝑛𝑛2, … 𝑛𝑛𝑛𝑛 so that: 

min / max 

f (x), where f (x) is a non-linear function  (2) 

with constraint 𝑔𝑔𝑖𝑖(𝑛𝑛) for every i = 1,2, ..., m              (3) 

and x ≥ 0                                                                                    (4) 

The constraint function 𝑔𝑔𝑖𝑖(𝑛𝑛) can be a nonlinear function or a linear function. In addition, (𝐱𝐱) and 

the function 𝑔𝑔𝑖𝑖(𝑛𝑛) are functions with 𝑛𝑛 variables. 

3.2  Theorem 1 Terms of KKT maximization issues (Winston, 2003) 

Let f(𝐱𝐱) and 𝑔𝑔𝑖𝑖(𝐱𝐱) be a maximized pattern problem. If 𝑛𝑛 = (𝑛𝑛1, 𝑛𝑛2, , . . 𝑛𝑛𝑛𝑛)) is an optimal solution 

for (𝐱𝐱) 𝑔𝑔𝑖𝑖(𝑛𝑛), then 𝑛𝑛 = (𝑛𝑛1, 𝑛𝑛2, , . . 𝑛𝑛𝑛𝑛) must satisfy (2) and there are multipliers  𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑟𝑟 as 

well as slack variable 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛 so that it satisfies 

1.   
𝜕𝜕𝑓𝑓
𝜕𝜕𝑛𝑛𝑖𝑖

−�𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1

𝜕𝜕𝑔𝑔𝑖𝑖
𝜕𝜕𝑛𝑛𝑖𝑖

+ 𝑠𝑠𝑖𝑖                                                 𝑓𝑓𝑡𝑡𝑟𝑟 𝑠𝑠 = 1,2, … ,𝑛𝑛 

2.    𝜆𝜆𝑖𝑖[𝑠𝑠𝑖𝑖 − 𝑔𝑔𝑖𝑖(𝑛𝑛)] = 0                                                   𝑓𝑓𝑡𝑡𝑟𝑟 𝑖𝑖 = 1,2, … ,𝑛𝑛 

3.   �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑛𝑛𝑖𝑖

−�𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1

𝜕𝜕𝑔𝑔𝑖𝑖
𝜕𝜕𝑛𝑛𝑖𝑖

� 𝑛𝑛𝑖𝑖                                                𝑓𝑓𝑡𝑡𝑟𝑟 𝑠𝑠 = 1,2 … ,𝑛𝑛 

4. 𝜆𝜆𝑖𝑖 ≥ 0 𝑓𝑓𝑡𝑡𝑟𝑟 i = 1,2,…,m 
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5. 𝑠𝑠𝑖𝑖  ≥  0 𝑓𝑓𝑡𝑡𝑟𝑟 j = 1,2,…,n 

 

Theorem 2.4. Terms of KKT minimization issues (2) 

Let f(𝐱𝐱) and  𝑔𝑔𝑖𝑖(𝐱𝐱) be a problem of patterned drinking. If 𝑛𝑛 = (𝑛𝑛1, 𝑛𝑛2, , . . 𝑛𝑛𝑛𝑛) is an optimal solution 

for f(𝐱𝐱) and 𝑔𝑔𝑖𝑖(x), then 𝑛𝑛 = (𝑛𝑛1, 𝑛𝑛2, , . . 𝑛𝑛𝑛𝑛)) must satisfy (2) and there are multipliers 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑟𝑟 

as well as the surplus variable 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛 so that it satisfies. 

1.   
𝜕𝜕𝑓𝑓
𝜕𝜕𝑛𝑛𝑖𝑖

+ �𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1

𝜕𝜕𝑔𝑔𝑖𝑖
𝜕𝜕𝑛𝑛𝑖𝑖

+ 𝑠𝑠𝑖𝑖                                                 𝑓𝑓𝑡𝑡𝑟𝑟 𝑠𝑠 = 1,2, … ,𝑛𝑛 

2.   𝜆𝜆𝑖𝑖[𝑠𝑠𝑖𝑖 − 𝑔𝑔𝑖𝑖(𝑛𝑛)] = 0                                                    𝑓𝑓𝑡𝑡𝑟𝑟 𝑖𝑖 =  1,2, … ,𝑛𝑛 

  

3.   �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑛𝑛𝑖𝑖

+ �𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1

𝜕𝜕𝑔𝑔𝑖𝑖
𝜕𝜕𝑛𝑛𝑖𝑖

� 𝑛𝑛𝑖𝑖                                                𝑓𝑓𝑡𝑡𝑟𝑟 𝑠𝑠 = 1,2 … ,𝑛𝑛 

4. 𝜆𝜆𝑖𝑖 ≥ 0 𝑓𝑓𝑡𝑡𝑟𝑟 i = 1,2,…,m 

5. 𝑠𝑠𝑖𝑖  ≥  0 𝑓𝑓𝑡𝑡𝑟𝑟 j = 1,2,…,n 

On the second condition of Theorem 2 and Theorem 3 result 𝑔𝑔𝑖𝑖(𝑛𝑛) − 𝑠𝑠𝑖𝑖  ≤ 0 This can be seen 

when 𝜆𝜆𝑖𝑖 = 0, so [𝑠𝑠𝑖𝑖 − 𝑔𝑔𝑖𝑖(𝑛𝑛)] ≠ 0 Based on the general form of the constraint function, then 

[𝑠𝑠𝑖𝑖 − 𝑔𝑔𝑖𝑖(𝑛𝑛)] > 0 is 𝑔𝑔𝑖𝑖(𝑛𝑛) ≤ 𝑠𝑠𝑖𝑖 

 

3.3.1. Quadratic Programming Solution 

Nature.1. Complementary slackness in quadratic programming (2) 

1) 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑖𝑖 under Kuhn-Tucker and 𝑛𝑛𝑖𝑖 can not both be positive. 

2) The surplus (excess) or slack variables for the i-th constraints and 𝜆𝜆𝑖𝑖 can not both be positive 

 

Evidence of Nature.1. 

1.  Consider the terms 1) and 3) on the theorem 1 namely: 

 condition 1) ie : 𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑗𝑗

 –∑ 𝜆𝜆1𝑟𝑟
𝑖𝑖=1

𝜕𝜕𝑔𝑔𝑖𝑖
𝜕𝜕𝑛𝑛𝑗𝑗

 + 𝑠𝑠𝑖𝑖  =  0, so : 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑗𝑗

− ∑ 𝜆𝜆𝑖𝑖𝑟𝑟
𝑖𝑖=1

𝜕𝜕𝑔𝑔𝑖𝑖
𝜕𝜕𝑛𝑛𝑗𝑗

= −𝑠𝑠𝑖𝑖 substituted to condition 3) 

 � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑗𝑗

− ∑ 𝜆𝜆𝑖𝑖𝑟𝑟
𝑖𝑖=1

𝜕𝜕𝑔𝑔𝑖𝑖
𝜕𝜕𝑛𝑛𝑗𝑗
� 𝑛𝑛𝑖𝑖 = 0 

 𝑠𝑠𝑖𝑖𝑛𝑛𝑖𝑖  =  0 



Journal of Mathematics Technology and Education                      Vol. 2, No.2., 2023 154                                                          

 If  𝑠𝑠𝑖𝑖  =  0, then 𝑛𝑛𝑖𝑖  ≠ 0,  _ ie 𝑛𝑛𝑖𝑖  >  0 

 𝑛𝑛𝑖𝑖 = 0, then 𝑛𝑛𝑖𝑖 ≠ 0, ie 𝑠𝑠𝑖𝑖  >  0 or 𝑠𝑠𝑖𝑖 < 0. Under condition 4) then 𝑠𝑠𝑖𝑖  >  0. 

 This applies also to Theorem 2.4, so it is evident that 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑖𝑖  under Kuhn-Tucker and 𝑛𝑛𝑖𝑖 

can not be both positive. 

2. Look at Terms 2) ie  𝜆𝜆𝑖𝑖[ 𝑠𝑠𝑖𝑖 −  𝑔𝑔𝑖𝑖(𝑛𝑛)] = 0 

 In the constraint function 𝑔𝑔𝑖𝑖(𝑛𝑛)  ≤  𝑠𝑠𝑖𝑖 then the canonical form of the constraint is 𝑔𝑔𝑖𝑖(𝑛𝑛) +

 𝑠𝑠1′ =  𝑠𝑠𝑖𝑖, so that Condition 2 becomes: 

 𝜆𝜆𝑖𝑖𝑠𝑠1′=0 

 If 𝜆𝜆𝑖𝑖 = 0  then 𝑠𝑠1′≠0, ie 𝑠𝑠1′ > 0. 

 If 𝑠𝑠𝑖𝑖′=0 then 𝜆𝜆𝑖𝑖≠0, ie 𝜆𝜆𝑖𝑖 > 0 or 𝜆𝜆𝑖𝑖<0. Under Condition 5) then,  

  𝜆𝜆𝑖𝑖 > 0. 

 In the constraint function 𝑔𝑔𝑖𝑖(𝑛𝑛)  ≥  𝑠𝑠𝑖𝑖 can be converted to 𝑔𝑔𝑖𝑖(𝑛𝑛) −  𝑠𝑠𝑖𝑖′ =  𝑠𝑠𝑖𝑖. 

 In the same way the 𝜆𝜆𝑖𝑖𝑠𝑠𝑖𝑖′ = 0, so it is proved that the surplus (excess) or slack variables for 

the i-th constraints and 𝜆𝜆𝑖𝑖 can not both be positive. 

 The equations derived from the step are a step in the linearity of a nonlinear programming 

problem by using Kuhn Tucker's condition. 

 

3.2  Successive Quadratic Programming 

 Successive Quadratic Programming (SQP) is a very powerful and popular class of methods 

for solving nonlinear programming problems, especially those with strong nonlinear boundaries 

(3). Like sequential linear programming, quadratic programming problems are formed from 

nonlinear programming problems and solved iteratively until they are optimized. However, 

iterative procedures are different from successive linear programs. 

 In quadratic programming, the economic model of quadratic functions, and constraints are 

all linear equations. To overcome this problem the Lagrangian function is formed, and Kuhn-

Tucker's condition is applied to the Lagrangian function to obtain a set of linear equations at this 

point, it is important to understand the solution of the quadratic programming problem. 

 This is part of the motivation for using quadratic programming which can be demonstrated 

by the following equation: 

max ∶  �𝑠𝑠𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑋𝑋𝑖𝑖 −
1
2

 ��𝑞𝑞𝑖𝑖𝑗𝑗𝑋𝑋𝑖𝑖

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

𝑋𝑋𝑗𝑗                (5) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 ∶  
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�𝑎𝑎𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

≤ 𝑠𝑠𝑖𝑖                                           𝑓𝑓𝑡𝑡𝑟𝑟 𝑖𝑖 = 1,2, … ,𝑛𝑛 

  𝑋𝑋𝑖𝑖 ≥ 0                                                      𝑓𝑓𝑡𝑡𝑟𝑟 𝑠𝑠 = 1,2 … ,𝑛𝑛 

where 𝑞𝑞𝑖𝑖𝑗𝑗 =  𝑞𝑞𝑗𝑗𝑖𝑖 is the second partial derivative with respect to 𝑛𝑛𝑖𝑖 and 𝑛𝑛𝑗𝑗 model nonlinear 

economy. 

The quadratic programming procedure starts by adding the slack variable 𝑛𝑛𝑛𝑛+𝑖𝑖  to the linear 

constraint equation. No need to use 𝑛𝑛𝑛𝑛+𝑖𝑖2  because the problem will be solved with linear 

programming, and all variables must be positive or zero. The Lagrangian function is formed as 

follows: 

𝐿𝐿(𝑋𝑋, 𝜆𝜆) = �𝑠𝑠𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑋𝑋𝑖𝑖 −
1
2
��𝑞𝑞𝑖𝑖𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 −�𝜆𝜆1

𝑟𝑟

𝑖𝑖=1

��𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑋𝑋𝑖𝑖 + 𝑛𝑛𝑛𝑛+1 − 𝑠𝑠1�   

A positive Lagrange multiplier is required, so a negative sign is used in the equation with the 

constraint equation. 

Setting the first partial derivative of a Lagrangian function with respect to 𝑛𝑛𝑖𝑖 and i equal to zero 

gives the following linear linear algebraic (n + m) set: 

𝑠𝑠𝑖𝑖 −�𝑞𝑞𝑖𝑖𝑗𝑗𝑋𝑋𝑗𝑗

𝑛𝑛

𝑗𝑗=1

−�𝑎𝑎𝑖𝑖𝑖𝑖

𝑟𝑟

𝑖𝑖=1

𝜆𝜆1 ≤ 0          𝑓𝑓𝑡𝑡𝑟𝑟 𝑠𝑠 = 1,2, …𝑛𝑛                       (6) 

�𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑟𝑟

𝑋𝑋𝑖𝑖 + 𝑋𝑋𝑛𝑛+1 − 𝑠𝑠1 = 0                  𝑓𝑓𝑡𝑡𝑟𝑟 𝑖𝑖 = 1,2, …𝑛𝑛                      (7) 

Kuhn-Tucker's inequality form, equation 6, is used to calculate 𝑛𝑛𝑖𝑖  > 0. Also, the condition of 

complementary clearance must be satisfied, ie the slack variable variable 𝑋𝑋𝑛𝑛+1 and the Lagrange 

i multiplier is zero. 

𝜆𝜆𝑖𝑖𝑋𝑋𝑛𝑛+1 = 0                     𝑓𝑓𝑡𝑡𝑟𝑟 𝑖𝑖 = 1,2, … ,𝑛𝑛                  (8) 

If  𝑋𝑋𝑛𝑛+1= 0, then the constraint is active, the equation;  𝜆𝜆𝑖𝑖 ≠ 0. However, if 𝑋𝑋𝑛𝑛+1 ≠ 0, then the 

constraint is inactive, an inequality and 𝜆𝜆𝑖𝑖 = 0 The equations of (6) and (7) can be converted to 

linear programming problems in the following way. The surplus variable is added to equation (6) 

as sj, and the slack variable has been added to equation (7) as 𝑋𝑋𝑛𝑛+𝑖𝑖. The slack variable 𝑋𝑋𝑛𝑛+𝑖𝑖 can 

serve as a variable for a base that was originally feasible for equation (7). However, artificial 

variables are required to have a reasonable basis for the equation (6). Adding artificial variables 

𝑧𝑧𝑖𝑖 with the coefficients 𝑠𝑠𝑖𝑖 to equation (6) is an easy way to start with 𝑧𝑧𝑖𝑖.=1  Also, the objective 

function is to minimize the number of artificial variables to ensure that they are not in the final 

optimal solution As a result of this modification, equation (6 ) and (7) to be: 
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𝑛𝑛𝑖𝑖𝑛𝑛 ∶ �𝑧𝑧𝑖𝑖 

𝑛𝑛

𝑖𝑖=1

                                                                                         (9) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 ∶ 

 �𝑞𝑞𝑖𝑖𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑋𝑋𝑗𝑗 + �𝑎𝑎𝑖𝑖𝑖𝑖

𝑟𝑟

𝑖𝑖=1

𝜆𝜆𝑖𝑖 − 𝑠𝑠𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑧𝑧𝑖𝑖 = 𝑠𝑠𝑖𝑖                𝑓𝑓𝑡𝑡𝑟𝑟 𝑠𝑠 = 1,2, … ,𝑛𝑛 

�𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑋𝑋𝑖𝑖 + 𝑋𝑋𝑛𝑛+𝑖𝑖 = 𝑠𝑠𝑖𝑖                                                                      𝑓𝑓𝑡𝑡𝑟𝑟 𝑖𝑖 = 1,2, … ,𝑛𝑛 

This is now a linear programming problem that can be solved for optimal values of x and λ, the 

solution of quadratic programming problems. In addition, the solution must satisfy 𝑛𝑛 ≥ 0, 𝜆𝜆 ≥

0 𝑎𝑎𝑛𝑛𝑎𝑎 𝜆𝜆𝑖𝑖𝑋𝑋𝑛𝑛+𝑖𝑖 = 0  

4 Conclusions 

Optimization on Non Negative Matrix Factorization is generally non-linear and for solving non-

linear program optimization problems can be used Quadratic Programming approach. 
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