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This research analyzes the flow in a round pipe using the Navier-Stokes equations 

with the aim of understanding the characteristics of flow and friction within the 

system. The Navier-Stokes equations are employed to describe the movement of 

fluid within the round pipe, taking into account the effects of viscosity and pressure 

on the fluid flow. Additionally, friction within the round pipe is analyzed as a 

consequence of the fluid flow, with the consideration of friction coefficients to 

depict the magnitude of frictional forces exerted on the pipe walls. Furthermore, 

the researchers demonstrate that friction coefficients increase with higher flow 

velocities and fluid viscosities. Simulation results indicate that laminar flow is the 

dominant condition within the round pipe under investigation. In laminar flow 

conditions, the boundary layers exhibit greater organization and the fluid flow is 

more stable. However, at higher flow velocities, a transition from laminar to 

turbulent flow can occur. The computational analysis presented in this study 

utilizes the Computational Fluid Dynamics (CFD) software COMSOL 

Multiphysics. This software employs robust numerical algorithms to efficiently 

solve the continuity, momentum, and Navier-Stokes equations. The program 

provides information regarding velocity profiles, pressure distributions, and other 

flow parameters along the round pipe. The simulation results are obtained for 

varying water velocities of 0.001 m/s, 0.01 m/s, 0.1 m/s, and 1 m/s. By integrating 

discretization methods, the continuity equation, momentum equation, Navier-

Stokes equations in component form, and energy loss calculations, this study offers 

profound insights into flow within round pipes and its characteristics. This research 

provides valuable insights into flow in round pipes, the effects of friction, and the 

challenges in achieving convergence solutions at high water velocities. 
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1. Introduction 

The analysis of flow in a round pipe is of great interest due to its relevance in various practical scenarios. 

To develop a more comprehensive comprehension of the intricate dynamics involved in fluid movement, 

researchers and engineers frequently utilize computational analysis. Therefore, there is a need for specific 

research that focuses on understanding the factors influencing fluid flow in pipes [1]. The focus of this study 

is to examine the properties of fluid flow that is incompressible and occurs within an extended, horizontal 

segment of a round pipe. The analysis will be based on the widely used Navier-Stokes equations, which provide 

a comprehensive mathematical framework for describing fluid flow [2]. By using computational techniques, 

our aim is to model and understand the intricate flow phenomena occurring within the pipe. 

One crucial aspect of studying fluid flow is determining the velocity profile and its variation along the pipe. 

While the fluid moves within the pipe, the interaction between the fluid and the inner wall generates frictional 

forces, causing shear stress on the inner surface. As the fluid progresses, the velocity profile undergoes 

changes, ultimately reaching a state known as fully developed flow, wherein the velocity remains consistent 

throughout the length of the pipe [3]. Our objective is to explore the connection between shear stress and 

different parameters that govern the dynamics of fluid flow. 

https://talenta.usu.ac.id/jormtt
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Additionally, we consider the influence of important factors such as fluid density and viscosity on flow 

behavior. These parameters play a significant role in determining the resistance encountered by the fluid as it 

passes through the pipe, requiring a pressure gradient to overcome frictional forces [4]. By developing 

nondimensional relationships between shear stress and other key parameters, valuable insights can be obtained 

regarding the fundamental characteristics of flow in a round pipe. Through computational analysis using the 

COMSOL Multiphysics program, this research aims to contribute to a broader understanding of fluid dynamics 

in pipe flow and provide useful insights for engineering applications [5]. By employing advanced numerical 

techniques and the Navier-Stokes equations, we can simulate and comprehensively analyze flow behavior, 

enabling us to optimize pipe designs, improve system efficiency, and enhance the overall performance of fluid-

based systems. 

2. Materials and Methods 

2.1. Navier-Stokes Equations for Round Pipe 

The method used in this study involves the use of the continuity equation, momentum equation, and Navier-

Stokes equations in component form to describe the changes in velocity and fluid pressure along the pipe. The 

continuity equation is used to ensure that the inflow and outflow of fluid from the pipe remain balanced. The 

momentum equation and Navier-Stokes equations are used to depict the balance of forces in the fluid flow and 

account for viscosity [6]. To analyze fluid flow in a round pipe, the law of conservation of mass is employed, 

which states that the mass of fluid must remain constant within a closed system. In the context of fluid flow in 

a round pipe, the continuity equation is utilized to understand how the mass of fluid changes along the pipe. 

This continuity equation will be used to model and analyze fluid flow in a round pipe. 

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑣) = 0, (1) 

where 𝜌 is the density of the fluid and 𝑣 is the velocity vector of the flow [6]. Next, the momentum equation 

will be explained, which states that the change in momentum within a fluid flow must be proportional to the 

forces acting on the fluid. The momentum equation allows us to analyze and predict the velocity, direction, 

and distribution of fluid momentum within a pipe. The momentum equation is given by: 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑣 . ∇𝑣) = −∇𝑝 + 𝜇∇2𝑣 + 𝑓, (2) 

This equation describes the law of conservation of momentum in fluid flow, where 𝑝 is the fluid pressure, 𝜇 is 

the dynamic viscosity of the fluid, and 𝑓 is the external force acting on the fluid [6]. The continuity equation 

states that the mass flow rate in the pipe must remain constant. In component form, the continuity equation 

can be written as: 

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
= 0, (3) 

In the given equations, 𝜌 represents the density of the fluid, 𝑡 denotes time, 𝑢, 𝑣, and 𝑤 symbolize the velocity 

components in the 𝑥, 𝑦, and 𝑧 directions correspondingly, while x, y, and z represent the spatial coordinates. 

The momentum equations (2) in component form state that the change in fluid velocity along the pipe is 

influenced by the pressure gradient, inertia forces, and viscosity forces. These equations can be written as: 

𝜕(𝜌𝑢)

𝜕𝑡
 +

𝜕(𝜌𝑢2)

𝜕𝑥
 +

𝜕(𝜌𝑢𝑣)

𝜕𝑦
 +

𝜕(𝜌𝑢𝑤)

𝜕𝑧
 =  −

𝜕𝑝

𝜕𝑥
 +  𝜌𝑓𝑥 +  𝜕/𝜕𝑥 (𝜇 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
)) 

𝜕(𝜌𝑣)

𝜕𝑡
 +

𝜕(𝜌𝑢𝑣)

𝜕𝑥
 +

𝜕(𝜌𝑣2)

𝜕𝑦
 +

𝜕(𝜌𝑣𝑤)

𝜕𝑧
 =  −

𝜕𝑝

𝜕𝑦
 +  𝜌𝑓𝑦 +  𝜕/𝜕𝑦 (𝜇 (

𝜕𝑣

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)) 

𝜕(𝜌𝑤)

𝜕𝑡
 +

𝜕(𝜌𝑢𝑤)

𝜕𝑥
 +

𝜕(𝜌𝑣𝑤)

𝜕𝑦
 +

𝜕(𝜌𝑤2)

𝜕𝑧
 =  −

𝜕𝑝

𝜕𝑧
 +  𝜌𝑓𝑧 +  𝜕/𝜕𝑧 (𝜇 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)), 

(4) 
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where 𝑝 is the pressure, 𝜇 is the dynamic viscosity, and 𝑓𝑥, 𝑓𝑦, and 𝑓𝑧 are the external forces in the directions 

of 𝑥, 𝑦, and 𝑧 correspondingly[7]. The Navier-Stokes equations in component form are a combination of the 

continuity equation and the momentum equations. These equations comprehensively describe the changes in 

fluid velocity and pressure along the pipe. Furthermore, researchers utilized appropriate boundary conditions 

for the flow problem in a round pipe. They applied initial velocity and pressure at the pipe inlet and 

implemented a zero-pressure gradient at the pipe outlet. By employing these boundary conditions, researchers 

were able to model realistic flow in the pipe [8]. The researchers also took into account the energy loss in the 

fluid flow inside the pipe. Energy loss can occur due to fluid friction with the pipe walls, changes in flow 

direction, or other resistances. By considering the energy loss equation, they can describe how pressure 

changes along the round pipe. This allows the researchers to understand radial pressure variations and study 

the factors that influence them, such as flow velocity, fluid viscosity, and pipe geometry. This equation 

describes the law of energy conservation of flow in a fluid in a round pipe.  

𝜌 (
𝜕𝑒

𝜕𝑡
+  𝑣 (

𝜕𝑒

𝜕𝑟
))  =  − (

𝜕

𝜕𝑟
) (𝑝𝑣)  + (

1

𝑟
)(

𝜕

𝜕𝑟
)(𝑟 (

𝜕𝑞

𝜕𝑟
)) + (

1

𝑟
)(

𝜕𝑞

𝜕𝑟
), (5) 

where 𝑒 is the specific energy, 𝑞 is the heat transfer rate, and 𝑣 is the radial velocity of the flow. Furthermore, 

we can describe the law of conservation of energy in fluid flow [9]. 

𝑑𝑃

𝑑𝑡
 =  −𝜌 ∇  ·  𝑣 + ∇ ·  (𝜇 ∇𝑣) +  𝑓 ·  𝑣, (6) 

where 𝑑𝑝/𝑑𝑡  is the change in pressure over time, ∇ ·  𝑣 is the divergence of flow velocity, ∇ ·  (𝜇 ∇ 𝑣) is the 

divergence of the viscosity gradient, and 𝑓 ·  𝑣 is the dot product of the external force and the flow velocity 

vector. 

2.2. Friction in a Round Pipe 

Friction within a pipe pertains to the hindrance experienced by a fluid while traversing the pipe, resulting 

from the interaction between the fluid and the inner surface of the pipe. This frictional force is responsible for 

the dissipation of energy and the conversion of mechanical energy into heat. Understanding and quantifying 

friction in a pipe is essential for various engineering applications involving fluid flow, such as designing 

pipelines, optimizing system efficiency, and calculating pressure drops [10]. Frictional forces occur as a result 

of shear stress at the interface between the fluid and the solid, causing the fluid particles in contact with the 

pipe wall to encounter a resistive drag force. This shear stress, denoted as 𝜏𝑤, acts tangentially to the surface 

of the pipe. It is directly related to the fluid's viscosity, which signifies the internal resistance of the fluid to 

flow, as well as the velocity gradient across the pipe's cross-section. The flow eventually becomes 

hydrodynamically fully developed, resulting in a constant velocity profile along the pipe. Due to friction with 

the pipe wall, a constant shear stress 𝜏w is present on the inside wall. The pressure is the only parameter that 

varies linearly along the pipe to overcome friction the fluid through. The objective is to establish a 

dimensionless correlation between shear stress 𝜏𝑤 and other parameters involved in the problem. 

The analysis focuses on deriving a nondimensional relationship for friction in a pipe by employing the 

iterative technique of repeating variables in a systematic manner. Assumptions include hydrodynamically fully 

developed flow, incompressible fluid, and no other significant parameters in the problem. Six variables and 

constants are considered: shear stress (𝜏𝑤), average velocity (𝑉), fluid viscosity (𝜇), fluid density (𝜌), pipe 

diameter (𝐷), and average roughness height (𝜖) [11]. The fundamental dimensions of each parameter are 

provided, with shear stress sharing the same dimensions as pressure. By setting 𝑗 equal to 3 (depicting the core 

dimensions of mass, length, and time), the expected number of nondimensional parameters (Π′𝑠) is determined 

as 3. Three repeating parameters are chosen: 𝑉, 𝐷, and 𝜌. The dependent Π (Π1) is derived as Π1 = 𝜏𝑤/(𝜌𝑉2), 
which is modified to represent the Darcy friction factor. Two independents Π′𝑠, related to fluid viscosity and 

roughness ratio, are also generated. The dependent Π is generated 

Π1 = 𝜏𝑤𝑉𝑎1𝐷𝑏1𝜌𝑐1   →   {Π1} = {(𝑚1𝐿−1𝑡−2)(𝐿1𝑡−1)𝑎1(𝐿1)𝑏1(𝑚1𝐿−3)𝑐1} (7) 

from which 𝑎1 = −2, 𝑏1 = 0, and 𝑐1 = −1, and thus the dependent Π is 
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Π1 =
𝜏𝑤

𝜌𝑉2
 (8) 

The nondimensional parameter that closely resembles this Π1 is the Darcy friction factor, which is defined 

with a numerator factor of 8 (Figure 1) [12]. 

.  

Figure 1. The Darcy friction factor is widely used in pipe flows 

Modified Π1 

Π1,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 =
8𝜏𝑤

𝜌𝑉2
= 𝐷𝑎𝑟𝑐𝑦 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =  𝑓 (9) 

Likewise, two independents Π’s are derived, and the specific details of these derivations are left for you to 

explore independently [12] 

Π2 = 𝜇𝑉𝑎2𝐷𝑏2𝜌𝑐2     ⟶  Π2 = 
𝜌𝑉𝐷

𝜇
=  𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 =  𝑅𝑒 

Π3 = 𝜖𝑉𝑎3𝐷𝑏3𝜌3     ⟶  Π3 = 
𝜖

𝐷
=  𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜                    

(10) 

The final functional relationship is written as, 

𝑓 =
8𝜏𝑤

𝜌𝑉2
= 𝑓 (𝑅𝑒,

𝜖

𝐷
), (11) 

where 𝑅𝑒 represents the Reynolds number and 𝜖/𝐷 is the roughness ratio. This correlation is applicable to 

both laminar and turbulent fully developed pipe flow conditions, with the roughness ratio being more 

significant in turbulent flow. Matching the roughness ratio 𝜖/𝐷 ensures geometric similarity between pipes 

[13]. The analysis highlights the connection between geometric similarity and dimensional analysis, 

emphasizing the importance of matching 𝜖/𝐷 in maintaining similarity between different pipe systems. 

2.3. Materials and Programs 

To illustrate the first step of defining the problem and establishing objectives in studying frictional forces 

in water flow inside a pipe. As an initial step in building a pipe flow model, a database of round pipe geometries 

has been designed. Numerical simulations of the water flow inside the pipe will be conducted using the 

COMSOL Multiphysics program. The water velocity is determined in the COMSOL Multiphysics program, 

while the friction and flow inside the pipe come from the results of the COMSOL Multiphysics program to 

analyze accurate interactions with water flowing in a round pipe [14]. The fully developed flow of a Newtonian 

fluid in a round pipe, also known as Poiseuille flow [2]. The flow is steady, laminar, and incompressible. The 

fluid flows through an infinitely long round pipe of diameter 𝐷 or radius 𝑅 =  𝐷/2. The pressure gradient 

𝜕𝑃/𝜕𝑥 is applied in the x-direction, causing the fluid to move from a higher-pressure region to a lower-pressure 

region. The following data can be used in the modeling of water flow in round pipe at COMSOL Multiphysics: 

1. Geometry: 

• Dimensions: Height = 4 centimeters, Width = 40 centimeters. 

2. Material properties: 
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• Dynamic viscosity of water (𝜇) = 𝜂𝑙𝑖𝑞𝑢𝑖𝑑1
(𝑇 [

1

𝐾
]) [𝑃𝑎 ∗ 𝑠] 

• Density (𝜌) = 𝜌𝑙𝑖𝑞𝑢𝑖𝑑2
(𝑇 [

1

𝐾
]) [

𝑘𝑔

𝑚3] 

• Water flow velocity (𝑢0) = 0,001 m/s; 0,01 m/s; 0,1 m/s; and 1 m/s 

3. Numerical parameters: 

• Initial damping factor = 0.01 

• Maximum number of iterations = 1000 

• Tolerance factor = 0.01 

This data will be used in COMSOL Multiphysics to build a mathematical model, inputting these parameters 

and conditions, and perform numerical simulations that depict the flow of water inside a round pipe. As a 

result, the created model will resemble the one shown in this image in COMSOL Multiphysics. 

 

Figure 2. Round Pipe Structure 

The "Build All Mesh" results in COMSOL Multiphysics provide information about the generated mesh. 

Number of vertex elements: There are 4 vertex elements in the mesh. Vertex elements represent the nodes or 

vertices in the mesh where the solution is computed. Number of boundary elements: The mesh consists of 616 

boundary elements. Boundary elements define the surface or boundary of the geometry where the simulation 

takes place. Number of elements: The total number of elements in the mesh is 11,388. This includes both 

volume elements and boundary elements. Volume elements represent the elements within the domain or 

volume of the geometry. Minimum element quality: The minimum element quality in the mesh is 0.2406. The 

element quality indicates how well the mesh elements conform to geometric requirements and modeling 

accuracy. A higher value indicates better quality elements. These results provide insights into the complexity 

and quality of the generated mesh. The number of elements and boundary elements gives an indication of the 

overall mesh resolution. The minimum element quality serves as a measure of how well the mesh meets the 

geometric requirements. It is important to have a sufficient number of elements and high-quality elements to 

ensure accurate simulation results, although it may also increase computational time. 

3. Results and Discussion 

3.1. Analysis Laminar Pipe Flow 

The result of water flowing in a round pipe, known as a Poiseuille flow. The fluid motion remains constant, 

smooth, and unaffected by compression. The fluid flows through a circular pipe with an infinite length, having 

a diameter 𝐷 or a radius 𝑅 equal to half of the diameter (𝑅 =  𝐷/2). A pressure difference 𝜕𝑃/𝜕𝑥 is applied 

along the x-axis, causing the fluid to move from an area of high pressure to an area of low pressure [15].  

𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡:   
𝜕𝑃

𝜕𝑥
=

𝑃2 − 𝑃1

𝑥2 − 𝑥1
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (12) 
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To achieve this, several assumptions and boundary conditions are established.  

Assumptions [13]: 

1. The pipe extends infinitely along the x-axis. 

2. The flow remains constant, indicating that all partial derivatives with respect to time are zero. 

3. The flow is fully developed and lacks any radial velocity component (𝑢𝑟 =  0). 
4. The fluid is incompressible, follows Newtonian behavior, and exhibits laminar flow characteristics. 

5. An unchanging pressure gradient is applied along the x-axis, as described in Equation (12). 

6. The velocity profile exhibits symmetry around the axis, with no swirling motion 𝑢𝜃 =  0, and all 

partial derivatives with respect to 𝜃 are zero. 

7. The influence of gravity is disregarded. 

 

Boundary Conditions [13]: 

1. At the boundary of the pipe (𝑟 =  𝑅), the velocity is zero, indicating a no-slip condition: �⃗� =  0. 

2. At the centerline of the pipe (r = 0), the radial derivative of velocity is zero: 𝜕𝑢/𝜕𝑟 =  0. 

The examination of fully developed flow in a circular pipe, commonly referred to as Poiseuille flow, entails 

the following procedure. We initiate the analysis by employing the incompressible continuity equation in 

cylindrical coordinates, which is a modified form of Equation (3). 

𝜕𝑢

𝜕𝑥
= 0, (13) 

First from (12), which states that u is not a function of x, implies that the velocity does not vary with the axial 

position inside the pipe. This observation is independent of the choice of origin and is a consequence of the 

fully developed nature of the flow. In other words, the flow has reached a stable and constant velocity profile 

along the pipe's length, regardless of its position. This behavior can be understood by considering the 

assumptions made in the problem. Assumption 1 states that the pipe is infinitely long, meaning there is nothing 

special about any specific position along the x-axis. As a result, the flow has had enough distance to fully 

develop and attain a constant velocity profile. Additionally, assumptions 2 and 6 state that the flow is steady 

and lacks any time or angular dependence. Since the flow is not changing with time or rotating around the axis 

(no swirl), it further supports the conclusion that the velocity is only a function of the radial distance r from 

the pipe's center.  

𝑅𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦:   𝑢 = 𝑢(𝑟)  𝑜𝑛𝑙𝑦 (14) 

Subsequently, our objective is to simplify the axial momentum equation, which is a modified version of 

Equation (4), to the greatest extent possible. 

1

𝑟
 
𝑑

𝑑𝑟
 (𝑟

𝑑𝑢

𝑑𝑟
) =

1

𝜇
 
𝜕𝑃

𝜕𝑥
 (15) 

Next the incompressible continuity equation and the axial momentum equation are stated and simplified. The 

continuity equation reveals that the axial velocity u does not depend on x, indicating that the velocity remains 

constant along the axial position inside the pipe due to the infinitely long length. Consequently, this indicates 

that the velocity profile has reached a fully developed state. Similarly, in the r-momentum equation, Equation 

(4), all terms become zero except for the pressure gradient term, which is also forced to be zero. 

 𝑟 − 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚:  
𝜕𝑃

𝜕𝑟
= 0 (16) 

To put it differently, the variable P does not depend on r. Considering that P remains unaffected by time 

(assumption 2) and θ (assumption 6), it can be deduced that P is, at most, a function of x. In such cases, the 

differential equations are solved. By solving the continuity equation and the radial momentum equation, 

expressions for the axial velocity u as a function of the radius r and the pressure P as a function of x are 

obtained. It is important to highlight that the 𝜃 component of the Navier-Stokes equation is not applicable in 

this particular scenario. 
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𝑅𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑟 − 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚:  𝑃 = 𝑃(𝑥)   𝑜𝑛𝑙𝑦 (17) 

Consequently, in Equation (14), we replace the partial derivative operator representing the pressure gradient 

with the total derivative operator, given that P solely varies with x. Consequently, all terms in the θ-component 

of the Navier-Stokes equation (Equation (4)) become zero. These conditions facilitate the determination of the 

integration constants in the equation for axial velocity. By multiplying both sides by r, we perform one 

integration to acquire 

𝑟
𝑑𝑢

𝑑𝑟
=

𝑟2

2𝜇
 
𝑑𝑃

𝑑𝑥
+ 𝐶1 (18) 

Here, 𝐶1 represents a constant of integration. It is important to observe that the pressure gradient, 𝑑𝑃/𝑑𝑥, 

remains constant in this context. By dividing both sides of Equation 17 by r, we perform a second integration 

and obtain the following result. 

𝑢 =
𝑟2

4𝜇
 
𝑑𝑃

𝑑𝑥
+ 𝐶1 ln 𝑟 + 𝐶2 (19) 

where 𝐶2 is a second constant of integration. 

To conclude, the solution is summarized as follows. By incorporating all the integration constants, we obtain 

the equation for axial velocity u as a function of pipe radius r and pressure gradient 𝑑𝑃/𝑑𝑥. This equation 

enables the calculation of the axial velocity at any point within the circular pipe and provides an estimation of 

the viscous friction force per unit area exerted on the pipe walls, based on the relationship between the pressure 

gradient and fluid viscosity. Another interpretation of this boundary condition implies that the velocity, u, must 

have a finite value at the centerline of the pipe. This condition can only be satisfied if the constant 𝐶1 is equal 

to 0 since the natural logarithm of 0 is undefined in Equation (19). We can now proceed to apply boundary 

condition 1 to the equation. 

𝑢 =
𝑅2

4𝜇
 
𝑑𝑃

𝑑𝑥
+ 0 + 𝐶2 = 0,   ⟶ 𝐶2 =

𝑅2

4𝜇
 
𝑑𝑃

𝑑𝑥
 (20) 

Finally, Eq. 18 becomes 

𝑢 =  (
1

4𝜇
)
𝑑𝑃

𝑑𝑥
 (𝑟2  −  𝑅2) (21) 

Using this equation, the axial velocity can be calculated at any point within the round pipe. Additionally, the 

viscous friction force per unit area acting on the pipe walls can be estimated using the relationship between the 

pressure gradient and fluid viscosity. 

3.2. Simulation Fluid Flow of Round Pipe 

Here are the results simulation from COMSOL Multiphysics depicting the flow of water inside the pipe 

with varying water velocities. By observing the generated simulation, we can understand how the flow changes 

with varying velocities and comprehend how changes in water velocity affect other variables such as pressure 

and frictional forces in the pipe. 
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 (a)  (b) 

 

 (c)  (d) 

Figure 3. Plot the movement of water flow in a round pipe with each speed (a) 𝑢0 = 0,001 m/s, (b) 𝑢0 = 

0,01 m/s, (c) 𝑢0 = 0,1 m/s, (d) 𝑢0 = 1 m/s, 

Furthermore, observing the convergence results at each water velocity is important to ensure that the obtained 

numerical solution is stable and non-divergent. A good convergence indicates that the solution iterations have 

reached a convergent and reliable state. By comparing the convergence results at different water velocities, it 

can be determined whether the model has provided consistent convergence results unaffected by changes in 

water velocity. This demonstrates the reliability of the model in depicting the flow of water inside the pipe, 

allowing for the analysis of the influence of water velocity on the observed flow phenomena. Below are the 

convergence results for each water velocity in COMSOL Multiphysics [16]. 

 

    (a)  (b) 

 

 (c)  (d) 

Figure 4. Plot of the convergence of the velocity of water flow in a round pipe with each velocity (a) 𝑢0 = 

0,001 m/s, (b) 𝑢0 = 0,01 m/s, (c) 𝑢0 = 0,1 m/s, (d) 𝑢0 = 1 m/s, 

3.3. Discussions from Result 

In the first simulation with a velocity of 0.001 meters per second, it can be observed that a convergent 

solution was obtained within 5 iterations. The iterations started with an initial solution estimate of 0.014 and 

an initial residue of 0.032. In each iteration, the solution was updated with a specified damping factor, and the 

step size used for convergence also changed in each iteration. By the final iteration, the residue value had 

reduced to approximately 25. Next, in the second simulation with a water velocity of 0.01 meters per second, 

it was observed that a convergent solution was obtained within 7 iterations. The iterations started with an initial 
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solution estimate of 0.14 and an initial residue of 0.32. By the final iteration, the residue value had reduced to 

approximately 3.4. Moving on to the third simulation with a water velocity of 0.1 meters per second, it was 

observed that a convergent solution was obtained within 102 iterations. The iterations started with an initial 

solution estimate of 1.4 and an initial residue of 3.2. By the final iteration, the residue value had reduced to 

approximately 1.3 x 102. Finally, in the last simulation with a water velocity of 1 meter per second, it was 

observed that a convergent solution was obtained within 113 iterations. The iterations started with an initial 

solution estimate of 14 and an initial residue of 32. By the final iteration, the residue value had reduced to 

approximately 7.5 x 102. As before, the iterations started with different initial solution estimates and initial 

residues. The differences in iterations occur due to variations in the water flow velocity. Higher flow velocities 

can impact the flow conditions and pressure distribution inside the pipe, which, in turn, affects the convergence 

of the solution. As the flow velocity increases, the flow becomes more complex, and the potential for more 

challenging convergence arises. Therefore, more iterations are required to achieve a convergent solution at 

higher water velocities. The disparities in water velocity can influence the convergence rate, the number of 

iterations needed, and the stability of the solution. 

4. Conclusion 

Based on the analysis of the Navier-Stokes equation for water flow in a round pipe, the axial velocity, u, is 

influenced by pressure factors and radius differences. By conducting simulations using the COMSOL 

Multiphysics program, this study obtained clear results regarding the computational analysis of water flow in 

a round pipe. Following the previous analysis, an examination of the velocity differences in water from 

equation (21) was carried out. Higher flow velocities can affect the flow conditions and pressure distribution 

inside the pipe, which in turn affects the convergence of the solution. The higher the flow velocity, the more 

complex the flow becomes, and the potential for more challenging convergence. Therefore, more iterations are 

required to achieve a convergent solution at higher water velocities. 
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