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1. INTRODUCTION 

A theory of sequence spaces is a branch in mathematics that is growing quite rapidly and has 

applications in many fields, such as computation [1], crystallography [2], economics, and many others 

( [3], [4]). Therefore, the theory has received much attention from many researchers. 

Research on sequence spaces can be carried out in several ways, such as by modifying their 

membership conditions or forming a new sequence space from a certain space by utilizing a certain 

function, matrix transformation, or any others. In this paper, we will discuss some sequence spaces 

that are formulated by utilizing an infinite transformation matrix. The such sequence spaces are called 

matrix domains [5]. In [5], Maddox discussed about the characterization of a mapping of a sequence 

space by some classes of the matrix transformations. 

A matrix domain of sequence spaces is a very interesting topic in the theory of sequence spaces ( [5], 

[6]). Apart from discussing the matrix domain, Malkowsky [6] also discussed a 𝐵𝐾-space, that is a 

Banach space with continuous coordinate functionals. One knows that a 𝐵𝐾-space is a key in matrix 

domain area. This is due to the fact that the BK-condition for any sequence space X gives 

characterization for the 𝛽-dual of the matrix domain of 𝑋 [7]. 

Many researchers constructed a domain matrix of sequence spaces, such as 𝑏𝑣 and 𝑙𝑝 sequences 

spaces, by using triangle infinite matrices.  Some of the reasons are the existence of the inverse of 

triangle infinite matrix and the transformation of triangle matrix to any sequence. Some triangle 
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infinite matrices that are often used include the Cesaro mean of order one, generalized weighted mean, 

and Riesz mean [8]. In [8], the characterization of the matrix transformation classes of the matrix 

domain of 𝑏𝑣 sequence spaces are discussed as well. In this paper, the terminology of the 𝑏𝑣 sequence 

space refers to the space of all sequence of bounded variation. 

The bv sequence space is very interesting to discuss. In fact, the bv sequence space contains 𝑙1, that 

is the space of all sequences of real numbers whose sums are absolutely convergent, and c, that is the 

space of all convergent sequences of real numbers. In addition, the 𝑏𝑣 sequence space is a matrix 

domain of 𝑙1 sequence space which is obtained by using a certain triangle matrix. 

Following the descriptions in the previous paragraphs, we discuss infinite matrix operators on the 𝑏𝑣 

sequence spaces. In addition, we also examine the matrix domain of the 𝑏𝑣 sequence space and 

observe its properties. 

As we know that any linear space has a corresponding space that is called a dual space. Dual vector 

spaces have important roles and applications in many branches of mathematics that use vector spaces. 

Particularly, when we apply to vector spaces of functions, dual spaces are used to describe measures, 
distributions, and Hilbert spaces. Consequently, the dual space is a very important concept in 

functional analysis. Let 𝜔, 𝑐𝑠, and 𝑏𝑠 be a set of all sequences of real numbers, a set of all convergent 

series, and a set of all bounded series, respectively. Following [8], the 𝛼-dual, the 𝛽-dual, and the 𝛾-

dual space of any sequence space 𝑋, each is denoted by 𝑋𝛼 , 𝑋𝛽 , 𝑋𝛾, are defined as follows: 

𝑋𝛼 = {�̅� ∈ 𝜔 ∶  �̅��̅� ∈ 𝑙1, for all �̅� ∈ 𝑋 } 

𝑋𝛽 = {�̅� ∈ 𝜔 ∶  �̅��̅� ∈ 𝑐𝑠, for all �̅� ∈ 𝑋 } and 

𝑋𝛾 = {�̅� ∈ 𝜔 ∶  �̅��̅� ∈ 𝑏𝑠, for all �̅� ∈ 𝑋 } 

Apart from being applicable to some fields mentioned above, of course dual spaces have many other 

uses. In this paper, we apply a dual space to characterize a mapping of a sequence space by some 

classes of matrix transformations. 

2. METHOD 

In this paper, the symbol 𝜔 is always meant as a collection of all sequences of real numbers. A norm 

space 𝑋 ⊂ 𝜔 is called a 𝐵𝐾-space if 𝑋 is a Banach space and for every 𝑛 ∈ ℕ, the canonical function 

𝑃𝑛 ∶  𝑋 →  ℝ, where 𝑃𝑛(�̅�) =  𝑥𝑛, �̅�  =  (𝑥𝑛) ∈  𝑋 is continuous [6]. We also define the following 

sequence spaces: 

𝑏𝑣 = {�̅� ∈ 𝜔 ∶  ∑|𝑥𝑘+1 − 𝑥𝑘|

∞

𝑘=1

< ∞ }  and 𝑏𝑣0 = {�̅� ∈ 𝜔 ∶  lim
𝑘→∞

𝑥𝑘 = 0 }. 

It is easy to check that both of them are Banach spaces with respect to the norm  

‖�̅�‖ = |𝑥1| +  ∑|𝑥𝑘+1 − 𝑥𝑘|

∞

𝑘=1

. 

Study about sequence spaces is closely related to infinite matrices [9]. Let 𝐴 = (𝑎𝑛𝑘) and 𝐵 =
(𝑏𝑛𝑘) be any infinite matrices. We define the multiplication 𝐴𝐵 as a matrix (𝑐𝑛𝑘), where 

𝑐𝑛𝑘 =∑𝑎𝑛𝑗 𝑏𝑗𝑘

∞

𝑗=1

 ,                                                                                      (1) 

whenever the summation in the right side of (1) exists for every 𝑛 ∈ ℕ. An inverse of an infinite 

matrix 𝐴 = (𝑎𝑛𝑘) is an infinite matrix 𝐵 = (𝑏𝑛𝑘) such that 𝐴𝐵 = 𝐼, where 
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𝐼 = (

1 0 0 0 ⋯
0 1 0 0 ⋯
0
⋯

0
⋯

1 0 ⋯
⋯ ⋯ ⋯

). 

The matrix 𝐼 is called an identity matrix. An infinite matrix 𝐴 = (𝑎𝑛𝑘) is called a triangle matrix if 

for every 𝑛 ≥  1, 𝑎𝑛𝑛 ≠  0 and 𝑎𝑛𝑘 =  0 for all 𝑘 >  𝑛 [10]. Every triangle matrix has an inverse and 

its inverse is also a triangle matrix. Further, if 𝐴 triangle and 𝐵 is an inverse of 𝐴, then we can show 

that 𝐵 is unique and 𝐵𝐴 = 𝐴𝐵 = 𝐼 [9]. 

 

Let 𝐴 be any infinite matrix and �̅� ∈  𝜔. We define 𝐴(�̅�) = (𝐴𝑛(�̅�)), where 𝐴𝑛(�̅�)  =
∑ 𝑎𝑛𝑘 𝑥𝑘
∞
𝑘=1  for every 𝑛 ≥  1, provided ∑ 𝑎𝑛𝑘  𝑥𝑘

∞
𝑘=1   exists for all 𝑛 ≥  1. In fact, for any triangle 

matrix 𝐴 and any �̅� ∈  𝜔, 𝐴(�̅�) exists [9]. 

 

Let 𝑋 and 𝑌 be any sequence spaces, both are subsets of 𝜔. An infinite matrix 𝐴 defines a matrix 

transformation from 𝑋 to 𝑌, denoted by 𝐴 ∶  𝑋 →  𝑌, if for every �̅� ∈  𝑋, 𝐴(�̅�) exists and 𝐴(�̅�) ∈  𝑌 

[11]. It clear that any Matrix transformation is a linear operator [8]. A collection of all matrix 

transformation from 𝑋 to 𝑌 denoted by (𝑋 ∶  𝑌). 
 

The following lemmas and theorems can be found in [8]. 
 

Lemma 1 Let 𝑋 ⊂  𝜔 be a sequence space and 𝐴 an infinite matrix. The set 𝑋𝐴 =
{�̅� ∈ 𝜔 ∶ 𝐴(�̅�) ∈ 𝑋} is a normed space with respect to ‖�̅�‖𝑋𝐴 = ‖𝐴(�̅�)‖𝑋. 

 

Theorem 2.1 Let 𝑋, 𝑌 ⊂ 𝜔 be sequence spaces. If 𝐴 is an infinite matrix and 𝑈 is a triangle matrix 

such that 𝑈𝐴 exists, then 𝐴 ∈  (𝑋 ∶  𝑌𝑈) ⇔  𝑈𝐴 ∈ (𝑋 ∶  𝑌). 
 

Lemma 2 Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix. The following statements hold: 

(i) 𝐴 ∈  (𝑙1 ∶  𝑙∞)  ⇔  sup
𝑘,𝑛≥1

|𝑎𝑛𝑘|  < ∞. 

(ii) 𝐴 ∈ (𝑙1 ∶  𝑐)  ⇔ sup
𝑘,𝑛≥1

|𝑎𝑛𝑘|  < ∞ and for every 𝑘 ≥  1 there are real number 𝛼𝑘 such that 

lim
𝑛→∞

𝑎𝑛𝑘  = 𝛼𝑘. 

(iii)𝐴 ∈  (𝑙1 ∶  𝑙1)  ⇔ sup
𝑘≥1

∑ |𝑎𝑛𝑘|
∞
𝑛≥1  < ∞. 

 

We also observe the following lemma. 

Lemma 3 The space (𝑏𝑣, ‖⋅‖𝑏𝑣) is isomorphic to the space (𝑙1, ‖⋅‖𝑙1). 

Proof. Notice that a matrix transformation 𝑇 ∶  𝑏𝑣 →  𝑙1, where 

 

𝑇(�̅�) = (

1 0 0 0 ⋯
−1 1 0 0 ⋯
0
⋯

−1
⋯

1 0 ⋯
⋯ ⋯ ⋯

)(�̅�), �̅� ∈ 𝑏𝑣, 

is an isomorphism. 
 

3. RESULT AND DISCUSSION 

In this section we discuss matrix domains of the sequence spaces by some matrix transformations. 

Let 𝐴 be any infinite matrix. The matrix domain of 𝑏𝑣 by 𝐴, denoted by 𝑏𝑣𝐴 or 𝑏𝑣(𝐴), is defined as 

 

𝑏𝑣(𝐴) = {�̅� ∈ 𝜔 ∶ 𝐴(�̅�) ∈ 𝑋}. 
 

If 𝐴 is a triangle matrix, then 𝑏𝑣(𝐴) is a normed space with respect to ‖�̅�‖𝑏𝑣(𝐴) = ‖𝐴(�̅�)‖𝑏𝑣 . 
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For any triangle matrix 𝐴, the spaces (𝑏𝑣(𝐴), ‖⋅‖𝑏𝑣(𝐴)) and (𝑏𝑣, ‖⋅‖𝑏𝑣) are isomorphic. It is proved 

in the following theorem. 

Theorem 3.1 Let 𝐴 be a triangle matrix. The space (𝑏𝑣(𝐴), ‖⋅‖𝑏𝑣(𝐴)) is isomorphic to (𝑏𝑣, ‖⋅‖𝑏𝑣). 

 

Proof. Since 𝐴 a triangle matrix, then 𝐴(�̅�) exists. So, we can define a function 𝑇 ∶ 𝑏𝑣(𝐴) →  𝑏𝑣 by 

𝑇(�̅�) = 𝐴(�̅�), �̅� ∈  𝑏𝑣(𝐴). 
It is clear that 𝑇 is a linear mapping. For any �̅� ∈  𝑏𝑣(𝐴), we have ‖𝑇(�̅�)‖𝑏𝑣 = ‖𝐴(�̅�)‖𝑏𝑣 = ‖�̅�‖𝑏𝑣(𝐴). 

It means that 𝑇 is an isometri. Since 𝐴 is a triangle matrix, then the inverse of 𝐴, i.e. 𝐴−1, exists and 

it is also a triangle matrix [9]. For any �̅� ∈  𝑏𝑣, we can take �̅� = 𝐴−1(�̅�) [9]. Since 𝐴(�̅�) = �̅� ∈ 𝑏𝑣, 

then we obtain �̅� ∈  𝑏𝑣(𝐴) and 𝑇(�̅�) = �̅�. So, 𝑇 is surjective. Thus, 𝑇 is an isomorphism. 

Following Lemma 3 and Theorem 3.1, we have the following corollary. 

Corollary 3.1 For every triangle matrix 𝐴, (𝑏𝑣(𝐴), ‖⋅‖𝑏𝑣(𝐴)) is isomorphic to (𝑙1, ‖⋅‖𝑙1). 

 

For any triangle matrix 𝐴, the transformation 𝐴: 𝑏𝑣(𝐴) →  𝑏𝑣 is continuous. It is shown in the 

following theorem. 

Theorem 3.2 Let 𝐴 be a triangle matrix. Then 𝐴 is a continuous mapping from (𝑏𝑣(𝐴), ‖⋅‖𝑏𝑣(𝐴)) 

onto (𝑏𝑣, ‖⋅‖𝑏𝑣). 
 

Proof. Take any �̅� ∈  𝑏𝑣(𝐴) and any 𝜀 > 0. For any �̅� ∈  𝑏𝑣(𝐴),  
‖𝐴(�̅�) − 𝐴(�̅�)‖𝑏𝑣 = ‖𝐴(�̅� − �̅�)‖𝑏𝑣 = ‖�̅� − �̅�‖𝑏𝑣(𝐴) . 

By choosing 𝛿 = 𝜀 > 0, we have ‖𝐴(�̅�) − 𝐴(�̅�)‖𝑏𝑣 < 𝜀, whenever ‖�̅� − �̅�‖𝑏𝑣(𝐴) < 𝛿. These 

complete the proof. 

 

Next, we prove that for any triangle matrix 𝐴, 𝑏𝑣(𝐴) is a 𝐵𝐾-space. 

Theorem 3.3 If 𝐴 is a triangle matrix, then (𝑏𝑣(𝐴), ‖⋅‖𝑏𝑣(𝐴)) is a 𝐵𝐾-space. 

Proof. By considering Theorem 3.1 and the completeness of 𝑏𝑣, then (𝑏𝑣(𝐴), ‖⋅‖𝑏𝑣(𝐴)) is a 

Banach space. Therefore, the remain we have to show is the continuity of the canonical mapping 

𝑝𝑛: 𝑏𝑣(𝐴) →  ℝ  for every 𝑛 ∈ ℕ. 

Take any �̅�, �̅� ∈  𝑏𝑣(𝐴), then 𝐴(�̅� − �̅�) ∈ 𝑏𝑣. Since 𝐴 is triangle matrix, then 𝐴−1 = (𝑏𝑛𝑘) 
exists, 𝐴−1(𝐴(�̅� − �̅�))  =  �̅� − �̅�, and 𝐴(�̅� − �̅�) ∈  𝑏𝑣 ⊆  𝑙∞. Further, for any integer 𝑛 ≥  1, 

|𝑝𝑛(�̅�) − 𝑝𝑛(�̅�)| = |𝑥𝑛 − 𝑦𝑛| = |∑𝑏𝑛𝑘 𝐴𝑘(�̅� − �̅�)

𝑛

𝑘=1

| ≤ ‖𝐴(�̅� − �̅�)‖∞  ∑|𝑏𝑛𝑘|

𝑛

𝑘=1

≤ ‖�̅� − �̅�‖𝑏𝑣(𝐴)  ∑|𝑏𝑛𝑘|

𝑛

𝑘=1

 . 

Let 𝜀 > 0 be an arbitrary. By choosing 𝛿 =
1

∑ |𝑏𝑛𝑘|
𝑛
𝑘=1

𝜀 > 0, then we obtain |𝑝𝑛(�̅�) − 𝑝𝑛(�̅�)| < 𝜀, 

whenever ‖�̅� − �̅�‖𝑏𝑣(𝐴) < 𝛿. Thus, 𝑝𝑛 is continuous for every natural number 𝑛 ≥  1. 

 

 

3.1 The matrix domain of  𝒃𝒗 induced by the Cesaro matrix 

Let 𝐶 be the Cesaro matrix of order 1, i.e. 𝐶 = (𝑐𝑛𝑘) with 𝑐𝑛𝑘 = {
1

𝑛
 , 1 ≤ 𝑘 ≤ 𝑛

0 , 𝑘 > 𝑛
. AS we 

mentioned before, the matrix domain of 𝑏𝑣 defined by using the triangle matrix 𝐶 is 𝑏𝑣(𝐶) =

 {�̅� ∈ 𝜔 ∶ 𝐶(�̅�) ∈ 𝑋}. Note that if we take �̅� = (
(−1)𝑘

𝑘
) then �̅� ∉  𝑏𝑣. However, since 𝐶(�̅�) =

 (
1

𝑛
∑

(−1)𝑘

𝑘
𝑛
𝑘=1 ) ∈  𝑏𝑣, then �̅� ∈  𝑏𝑣(𝐶). So, we have proved that 𝑏𝑣(𝐶) ⊈  𝑏𝑣. 

 

Let 𝐶 be a Cesaro matrix of order 1, i.e. 
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𝐶 =

(

 
 

1 0 0       0 ⋯
1/2 1/2 0       0 ⋯
1/3
1/4
⋯

1/3
1/4
⋯

1/3
1/4
⋯

  0
1/4
⋯

⋯
⋯
⋯)

 
 

 and Δ =

(

 
 

1 0 0    0 ⋯
−1 1 0    0 ⋯
0
0
⋯

−1
0
⋯

1
−1
⋯

0
1
⋯

⋯
⋯
⋯)

 
 

  

If Φ = Δ𝐶, then 

Φ =

(

  
 

1 0 0 ⋯

−1 +
1

2

1

2
0 ⋯

−
1

2
+
1

3
⋯

−
1

2
+
1

3
⋯

1

3
⋯

⋯
⋯)

  
 
. 

Next, the inverse of the matrix 𝐶 and Φ are 𝐶−1 and Φ−1 respectively, where 

 

𝐶−1 =

(

 
 

1 0 0    0  ⋯
−1 2 0    0 ⋯
0
0
⋯

−2
0
⋯

3
−3
⋯

0
4
⋯

⋯
⋯
⋯)

 
 

 and Φ−1 =

(

 
 

1 0 0   0 ⋯
1 2 0   0 ⋯
1
1
⋯

1
1
⋯

3
1
⋯

 0
4
⋯

⋯
⋯
⋯)

 
 

 .  

We recall what so called Schauder basis of any sequence space 𝑋 (See for e.g. [8]). Let 𝑋 be a 

sequence space. The sequence (𝑏𝑘) in 𝑋 is called a Schauder basis of 𝑋, if for each �̅� ∈  𝑋 there exist 

a unique sequence (𝛼𝑘) of scalars such that �̅� =  ∑ 𝛼𝑘  𝑏𝑘
∞
𝑘=1 . 

 

Given a sequence 𝑡(𝑘)  =  ( 𝑡𝑛
(𝑘)) ∈ 𝑏𝑣(𝐶) for all 𝑘 ≥  1, where 𝑡𝑛

(𝑘) = 0 (1 ≤ 𝑛 < 𝑘),  𝑡𝑛
(𝑘) =

(−1)𝑛−𝑘 𝑘   

(𝑘 ≤ 𝑛 ≤ 𝑘 + 1), and 𝑡𝑛
(𝑘) = 0 (𝑛 > 𝑘 + 1). The following theorem shows that the sequence (𝑡(𝑘)) 

is a Schauder basis of 𝑏𝑣(𝐶). 
 

Theorem 3.4 Given a sequence 𝑡(𝑘)  =  ( 𝑡𝑛
(𝑘)) ∈ 𝑏𝑣(𝐶) for all 𝑘 ≥  1, which is where 𝑡𝑛

(𝑘) =

0 (1 ≤ 𝑛 < 𝑘),  𝑡𝑛
(𝑘) = (−1)𝑛−𝑘 𝑘 (𝑘 ≤ 𝑛 ≤ 𝑘 + 1), and 𝑡𝑛

(𝑘) = 0 (𝑛 > 𝑘 + 1). The sequence (𝑡(𝑘)) 
is a Schauder basis of 𝑏𝑣(𝐶). 
 

Proof. Let �̅� ∈  𝑏𝑣(𝐶) be an arbitrary, then 𝐶(�̅�) ∈  𝑏𝑣. For each 𝑘 ≥  1 defines 𝛼𝑘  =  𝐶𝑘(�̅�) =
1

𝑘
∑ 𝑥𝑗
𝑘
𝑗=1 . Note that for any fixed 𝑘 ≥  1, 

𝑡(𝑘) = ( 𝑡1
(𝑘)
, 𝑡2
(𝑘)
, 𝑡3
(𝑘)
, … ) = (0, 0, 0, … , 0⏟      

𝑘−1

, 𝑘, −𝑘, 0, 0, 0, … ). 

Then 𝐶(𝑡(𝑘)) =  (0, 0, 0, … , 0⏟      
𝑘−1

, 1, 0, 0, 0, …)  =  𝑒(𝑘). If for any natural number 𝑚 ≥ 1, we define 

�̅�(𝑚) = ∑ 𝛼𝑘 𝑡
(𝑘)𝑚

𝑘=1 , then �̅�(𝑚) ∈ 𝑏𝑣(𝐶). Further, 𝐶(�̅� − �̅�(𝑚)) =

(0, 0, 0, … , 0⏟      
𝑚

, 𝛼𝑚+1, 𝛼𝑚+2, 𝛼𝑚+3, … ), for every 𝑚 ≥  1. Let 𝜀 >  0 be an arbitrary. Since 

∑ |𝐶𝑘+1(�̅�) − 𝐶𝑘(�̅�)|
𝑛
𝑘=1  convergent, then there exists a number 𝑚0 ∈ ℕ such that for each 𝑚 ∈  ℕ 

with 𝑚 ≥ 𝑚0, we have ∑ |𝐶𝑘+1(�̅�) − 𝐶𝑘(�̅�)|
∞
𝑘=𝑚+1 < 𝜀. These imply 

‖�̅� − �̅�(𝑚)‖
𝑏𝑣(𝐶)

= ‖𝐶(�̅� − �̅�(𝑚))‖
𝑏𝑣
= ∑ |𝛼𝑘+1 − 𝛼𝑘|

∞

𝑘=𝑚+1

= ∑ |𝐶𝑘+1(�̅�) − 𝐶𝑘(�̅�)|

∞

𝑘=𝑚+1

< 𝜀, 

for every 𝑚 ≥ 𝑚0. Thus, ‖�̅� − �̅�(𝑚)‖
𝑏𝑣(𝐶)

< 𝜀, for all 𝑚 ≥ 𝑚0, then lim
𝑚→∞

�̅�(𝑚) = �̅�. So, 



Journal of Research in Mathematics Trends and Technology Vol.6, No.2 (2024) 057–068 62 

�̅� = lim
𝑚→∞

�̅�(𝑚) = lim
𝑚→∞

∑𝛼𝑘 𝑡
(𝑘)

𝑚

𝑘=1

=∑𝛼𝑘 𝑡
(𝑘)

∞

𝑘=1

 . 

The uniqueness of the sequence (𝛼𝑘) follows from the definition of (𝑡(𝑘)). Hence, the sequence (𝑡(𝑘)) 

is a Schauder basis of 𝑏𝑣(𝐶). 
 

Note that for each 𝑘 ≥  1,  𝐶(𝑡(𝑘)) =  𝑒(𝑘) ∈  𝑐0. This means 𝑡(𝑘) ∈ 𝑐0(𝐶). So, the sequence (𝑡(𝑘)) is 

a Schauder basis of 𝑏𝑣0(𝐶) = 𝑏𝑣(𝐶) ∩ 𝑐0(𝐶). 
 

The Schauder basis of any sequence space is not unique. Another Schauder basis of 𝑏𝑣(𝐶) is given 

in the following theorem. 

Theorem 3.5 Given a sequence 𝑡(𝑘)  =  ( 𝑡𝑛
(𝑘)) ∈ 𝑏𝑣(𝐶) for all 𝑘 ≥  1, which is where 𝑡𝑛

(𝑘) =

0 (1 ≤ 𝑛 < 𝑘),  𝑡𝑛
(𝑘) = 𝑘 (𝑛 = 𝑘), and 𝑡𝑛

(𝑘) = 1 (𝑛 > 𝑘). The sequence (𝑡(𝑘)) is a Schauder basis of 

𝑏𝑣(𝐶). 
Proof. Let �̅� ∈  𝑏𝑣(𝐶). By defining 𝛼𝑘  = Φ𝑘  (�̅�) for every 𝑘 ≥  1, then the assertion follows. 

 

Definition 1 For any �̅� ∈ 𝜔, we define the matrices 𝐵 = (𝑏𝑛𝑘) and 𝐷 = (𝑑𝑛𝑘) as the following: 

(i) 𝑏𝑛𝑘 = 𝑎𝑛, if 1 ≤  𝑘 <  𝑛, 𝑏𝑛𝑛 = 𝑛 𝑎𝑛, and 𝑏𝑛𝑘  =  0, if  𝑘 >  𝑛, and 

(ii) 𝑑𝑛𝑘 = 𝑘 𝑎𝑘 + ∑ 𝑎𝑗
𝑛
𝑗=𝑘+1  (1 ≤  𝑘 <  𝑛 ), 𝑑𝑛𝑘 =  𝑛 𝑎𝑛 (𝑘 =  𝑛), and 𝑑𝑛𝑘 = 0  (𝑘 >  𝑛). 

 

 We also define 

𝑑1 = {�̅� ∈ 𝜔 ∶  sup
𝑘≥1 

∑|𝑏𝑛𝑘|

∞

𝑛=1

< ∞ } , 𝑑2 = {�̅� ∈ 𝜔 ∶  lim
𝑛→∞

𝑑𝑛𝑘  exist, for all 𝑘 ≥ 1} , and 

𝑑3 = {�̅� ∈ 𝜔 ∶  sup
𝑘,𝑛≥1 

|𝑑𝑛𝑘| < ∞ }. 

Further, we prove the following theorems. 

Theorem 3.6 Let 𝐵 = (𝑏𝑛𝑘) be a matrix as given in Definition 1. Then [𝑏𝑣(𝐶)]𝛼 = 𝑑1. 
 

Proof. Let �̅� ∈  𝑏𝑣(𝐶), then �̅� = Φ (�̅�) ∈  𝑙1. For each 𝑛 ≥  1, we have  

𝐵𝑛(�̅�) = 𝑎𝑛  (𝑛 𝑦𝑛  + ∑𝑦𝑘

𝑛−1

𝑘=1

) = 𝑎𝑛 𝑥𝑛 . 

 So, 𝐵(�̅�) =  �̅��̅�. These imply, �̅��̅� ∈  𝑙1 if and only if 𝐵(�̅�) ∈ 𝑙1. As a consequence, we obtain that 

�̅� ∈  [𝑏𝑣(𝐶)]𝛼 if and only if 𝐵 ∈ (𝑙1 ∶  𝑙1). Therefore, by Lemma 2, we get �̅� ∈ [𝑏𝑣(𝐶)]𝛼 if and only 

if sup
𝑘≥1

∑ |𝑏𝑛𝑘|
∞
𝑛=1 < ∞. This gives us a result that [𝑏𝑣(𝐶)]𝛼 = 𝑑1. 

 

Theorem 3.7 Let 𝐷 = (𝑑𝑛𝑘) be a matrix as given in Definition 1. The 𝛽-dual of the space 𝑏𝑣(𝐶) is 

the set 𝑑2 ∩ 𝑑3. 
 

Proof. For any �̅� ∈ 𝑏𝑣(𝐶), �̅� = Φ (�̅�) ∈  𝑙1. It holds also that 

𝐷𝑛(�̅�) =  ∑𝑎𝑘 (𝑘 𝑦𝑘 +∑𝑦𝑗

𝑘−1

𝑗=1

)

𝑛

𝑘=1

=∑𝑎𝑘  𝑥𝑘

𝑛

𝑘=1

, 

 for every 𝑛 ≥  1. So, 𝐷(�̅�) = ( ∑ 𝑎𝑘  𝑥𝑘
𝑛
𝑘=1 ). Therefore, we get a statement that �̅��̅� ∈  𝑐𝑠 if and only 

if 𝐷(�̅�) ∈  𝑐, which implies �̅� ∈  [𝑏𝑣(𝐶)]𝛽 if and only if 𝐷 ∈  (𝑙1: 𝑐). Therefore, by Lemma 2. we 

find that �̅� ∈ [𝑏𝑣(𝐶)]𝛽 if and only if  lim
𝑛→∞

𝑑𝑛𝑘 exist for all 𝑘 ≥  1 and sup
𝑘,𝑛≥1

|𝑑𝑛𝑘| < ∞. This proves 

that [𝑏𝑣(𝐶)]𝛽 = 𝑑2 ∩ 𝑑3. 

 



Journal of Research in Mathematics Trends and Technology Vol.6, No.2 (2024) 057–068 63 

Theorem 3.8 The 𝛾-dual of 𝑏𝑣(𝐶) is the set 𝑑3. 

 

Proof. Notice that for any �̅� ∈  𝑏𝑣(𝐶), �̅� = Φ (�̅�) ∈  𝑙1. Since for each 𝑛 ≥  1, ∑ 𝑎𝑘  𝑥𝑘
𝑛
𝑘=1 = 𝐷𝑛(�̅�), 

then �̅��̅� ∈ 𝑏𝑠 if and only if 𝐷(�̅�) ∈  𝑙∞. This implies �̅� ∈  [𝑏𝑣(𝐶)]𝛾 if and only if 𝐷 ∈ (𝑙1 ∶  𝑙∞). 
Further, by following the Lemma 2. we find that �̅� ∈ [𝑏𝑣(𝐶)]𝛾 if and only if sup

𝑘,𝑛≥1
|𝑑𝑛𝑘| < ∞. Thus, 

[𝑏𝑣(𝐶)]𝛾 =  𝑑3. 
 

The following theorem states inclusion relations in 𝑏𝑣0(𝐶). 
Theorem 3.9 The following relations are true. 

𝑑1 ⊆ [𝑏𝑣0(𝐶)]
𝛼, 𝑑2 ∩ 𝑑3 ⊆ [𝑏𝑣0(𝐶)]

𝛽, 𝑑3 ⊆ [𝑏𝑣0(𝐶)]
𝛾. 

 

Proof. Note that 𝑏𝑣0(𝐶) ⊆  𝑏𝑣(𝐶). First, we will show that [𝑏𝑣(𝐶)]𝛼 ⊆  [𝑏𝑣0(𝐶)]
𝛼. Let �̅� ∈

[𝑏𝑣(𝐶)]𝛼, then for each �̅� ∈ 𝑏𝑣(𝐶) we have �̅��̅� ∈  𝑙1. Especially, for each �̅� ∈ 𝑏𝑣0(𝐶) we have �̅��̅� ∈
𝑙1, so �̅� ∈ [𝑏𝑣0(𝐶)]

𝛼. In the same way, it is obtained that [𝑏𝑣(𝐶)]𝛽 ⊆ [𝑏𝑣0(𝐶)]
𝛽 and [𝑏𝑣(𝐶)]𝛾 ⊆

[𝑏𝑣0(𝐶)]
𝛾. Since [𝑏𝑣(𝐶)]𝛼 = 𝑑1, [𝑏𝑣(𝐶)]

𝛽 = 𝑑2 ∩ 𝑑3 and [𝑏𝑣(𝐶)]
𝛾 = 𝑑3, then the assertions 

follow. 

 

Next, we discuss some characterizations of the matrix transformation classes of the space 𝑏𝑣(𝐶), 
which are presented in the following theorems. 

Theorem 3.10 Let 𝑌 be any sequence space and 𝐴 = (𝑎𝑛𝑘) and 𝐸 = (𝑒𝑛𝑘) infinite matrices such that 

𝑘, 𝑛 ≥  1 holds 𝑒𝑛𝑘 = 𝑘 𝑎𝑛𝑘 + ∑ 𝑎𝑛𝑗
∞
𝑗=𝑘+1 . The matrix transformation 𝐴 ∈ (𝑏𝑣(𝐶) ∶  𝑌) if and only 

if (𝑎𝑛𝑘)𝑘 ∈ [𝑏𝑣(𝐶)]
𝛽 for every 𝑛 ≥ 1 and 𝐸 ∈ (𝑙1 ∶  𝑌). 

Proof.  

(⟹)Take any �̅� ∈ 𝑏𝑣(𝐶). Since 𝐴 ∈ (𝑏𝑣(𝐶) ∶  𝑌), then 𝐴(�̅�) exists and 𝐴(�̅�) ∈ 𝑌. Therefore, for 

each 𝑛 ≥  1, ∑ 𝑎𝑛𝑘  𝑥𝑘
∞
𝑘=1  is convergent, so (𝑎𝑛𝑘)𝑘 ∈ [𝑏𝑣(𝐶)]

𝛽. Further, take any �̅� ∈ 𝑙1, then there 

exists �̅� ∈ 𝑏𝑣(𝐶), such that �̅� = Φ(�̅�). For each 𝑛 ≥ 1, we have  

𝐴𝑛(�̅�) = ∑𝑎𝑛𝑘 𝑥𝑘

∞

𝑘=1

=∑𝑎𝑛𝑘  (𝑘 𝑦𝑘 +∑𝑦𝑗

𝑘−1

𝑗=1

)

∞

𝑘=1

=∑(𝑘 𝑎𝑛𝑘 + ∑ 𝑎𝑛𝑗

∞

𝑗=𝑘+1

)𝑦𝑘

∞

𝑘=1

=∑𝑒𝑛𝑘 𝑦𝑘

∞

𝑘=1

= 𝐸𝑛(�̅�). 
 

Therefore, 𝐴(�̅�) = 𝐸(�̅�). This is followed by 𝐸 ∈ (𝑙1 ∶  𝑌). 
(⟸)Let �̅� ∈  𝑏𝑣(𝐶). Since for each 𝑛 ≥  1, (𝑎𝑛𝑘)𝑘 ∈ [𝑏𝑣(𝐶)]

𝛽, then ∑ 𝑎𝑛𝑘  𝑥𝑘
∞
𝑘=1  is convergent, or 

in other words 𝐴(�̅�) exists. Since 𝐴(�̅�) = 𝐸(�̅�) for all �̅� ∈ 𝑙1 and also 𝐸 ∈ (𝑙1 ∶  𝑌), then we have 

𝐴(�̅�) ∈ 𝑌. So, we have proved 𝐴 ∈ (𝑏𝑣(𝐶) ∶  𝑌). 
Theorem 3.11 Let 𝐵 = (𝑏𝑛𝑘) and 𝐹 = (𝑓𝑛𝑘) be infinite matrices such that 𝑓1𝑘 = 𝑏1𝑘 and 𝑓𝑛𝑘 =
1

𝑛
𝑏𝑛𝑘 −

1

𝑛(𝑛−1)
∑ 𝑏𝑗𝑘
𝑛−1
𝑗=1  for every 𝑛 ≥  2, 𝑘 ≥  1. Then for any sequence space 𝑌, 𝐵 ∈ (𝑌 ∶

 𝑏𝑣(𝐶)) ⟺ 𝐹 ∈ (𝑌 ∶  𝑙1). 
Proof.  

(⟹)Let �̅� ∈ 𝑌. Since 𝐵 ∈ (𝑌 ∶  𝑏𝑣(𝐶)), then 𝐵(�̅�) exists and 𝐵(�̅�) ∈ 𝑏𝑣(𝐶). By applying Φ, we get 

Φ (𝐵(�̅�)) ∈  𝑙1. Note that Φ1(𝐵(�̅�))  = ∑ 𝑏1𝑘 𝑦𝑘
∞
𝑘=1 = 𝐹1(�̅�) and 

Φ𝑛 (𝐵(�̅�)) =
1

𝑛
∑𝑏𝑛𝑘 𝑦𝑘

∞

𝑘=1

−
1

𝑛(𝑛 − 1)
∑∑𝑏𝑗𝑘 𝑦𝑘

∞

𝑘=1

𝑛−1

𝑗=1

= 𝐹𝑛(�̅�), 

for every 𝑛 ≥  2. These imply 𝐹(�̅�) = Φ(𝐵(�̅�)), so 𝐹(�̅� = Φ(𝐵(�̅�)) ∈ 𝑙1. Thus, 𝐹 ∈ (𝑌 ∶  𝑙1).  

(⟸)Let �̅� ∈ 𝑌. Since 𝐹 ∈ (𝑌 ∶  𝑙1), then 𝐹(�̅�) exists and 𝐹(�̅�) ∈ 𝑙1. Since 𝐹(�̅�) = Φ(𝐵(�̅�)) and 𝐹 ∈
(𝑌 ∶  𝑙1), then Φ(𝐵(�̅�)) ∈ 𝑙1. This implies 𝐵(�̅�) ∈ 𝑏𝑣(𝐶). 

 

3.2 The matrix domain of 𝒃𝒗 defined by the Riesz matrix 
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Let 𝑞𝑘 > 0 for every 𝑘 ≥ 1. For any 𝑘, 𝑛 ≥ 1, we define 𝑟𝑛𝑘 = {
1

𝑄𝑘
 𝑞𝑘  , 1 ≤ 𝑘 ≤ 𝑛

0 , 𝑘 > 𝑛
, where 

𝑄𝑘 = ∑ 𝑞𝑗
𝑘
𝑗=1 . The matrix 𝑅 = (𝑟𝑛𝑘) is called a Riesz matrix or Riesz mean. If Ψ is a matrix defined 

by Ψ = Δ𝑅, then Ψ is a triangle matrix and 

Ψ =

(

 
 
 
 

1

𝑄1
𝑞1 0 0         ⋯

(
1

𝑄2
−
1

𝑄1
) 𝑞1

1

𝑄2
𝑞2 0         ⋯

(
1

𝑄3
−
1

𝑄2
) 𝑞1

⋯

(
1

𝑄3
−
1

𝑄2
) 𝑞2

⋯

1

𝑄3
𝑞3

⋯

⋯
⋯
)

 
 
 
 

. 

We observe the following inclusion theorem. 

Theorem 3.12 It is true that 𝑏𝑣(𝐶) ⊆ 𝑏𝑣(𝑅) for some Riesz matrix 𝑅. 

Proof. Let �̅� ∈  𝑏𝑣(𝐶) be an arbitrary, then 𝐶(�̅�) = (
1

𝑛
∑ 𝑥𝑘
𝑛
𝑘=1 ) ∈  𝑏𝑣. For every 𝑘 ≥ 1, choose 𝑞𝑘 =

1, then 𝑄𝑘 = ∑ 1𝑘
𝑗=1 = 𝑘. Furthermore, for the related Riesz matrix 𝑅, we find 

𝑅(�̅�) = (
1

𝑄𝑛
∑𝑞𝑘  𝑥𝑘

𝑛

𝑘=1

) = (
1

𝑄𝑛
∑𝑥𝑘

𝑛

𝑘=1

) = 𝐶(�̅�) ∈ 𝑏𝑣. 

This implies �̅� ∈ 𝑏𝑣(𝑅), hence 𝑏𝑣(𝐶) ⊆ 𝑏𝑣(𝑅). 
 

Generally, 𝑏𝑣(𝑅) ⊈ 𝑏𝑣. Notice that �̅�  =  (
(−1)𝑘

𝑘
) ∈ 𝑏𝑣(𝐶). It can be shown that �̅� ∈ 𝑏𝑣(𝑅), where 

𝑅 is the Riesz matrix as defined in the proof of Theorem 3.12. However, �̅� ∉  𝑏𝑣. 

 

Let 𝑞𝑘 > 0 and 𝑄𝑘 =  ∑ 𝑞𝑗
𝑘
𝑗=1  for any integer 𝑘 ≥ 1. If for every integer 𝑘 ≥ 1, the sequence 

𝑡(𝑘) = (𝑡𝑛
(𝑘)
) satisfies 𝑡𝑛

(𝑘) = 0 (1 ≤ 𝑛 < 𝑘),  𝑡𝑛
(𝑘) =

(−1)𝑛−𝑘

𝑞𝑛
𝑄𝑘  (𝑘 ≤ 𝑛 ≤ 𝑘 + 1), and 𝑡𝑛

(𝑘) = 0 (𝑛 >

𝑘 + 1), then 𝑡(𝑘) ∈ 𝑏𝑣(𝑅) for every 𝑘 ≥ 1. It is easy to check that the sequence (𝑡(𝑘)) is a Schauder 

basis of 𝑏𝑣(𝑅). We observe also that the sequence (𝑡(𝑘)), where 𝑡𝑛
(𝑘) = 0 (1 ≤ 𝑛 < 𝑘),  𝑡𝑛

(𝑘) =
1

𝑞𝑛
𝑄𝑛 (𝑛 = 𝑘), and 𝑡𝑛

(𝑘) =
1

𝑞𝑛
(𝑄𝑛 − 𝑄𝑛−1 )  (𝑛 > 𝑘), is a Schauder basis of 𝑏𝑣(𝑅). 

 

Next, we will be formulated some characterizations of a matrix transformation classes of the space 

𝑏𝑣(𝑅). 
Theorem 3.13 Let 𝑞𝑘 > 0 and 𝑄𝑘 = ∑ 𝑞𝑗

𝑘
𝑗=1  for all integer 𝑘 ≥ 1. If 𝐴 = (𝑎𝑛𝑘) and 𝐸 = (𝑒𝑛𝑘) are 

infinite matrices such that 𝑒𝑛𝑘 =
𝑎𝑛𝑘

𝑞𝑘
𝑄𝑘 + ∑

𝑎𝑛𝑗

𝑞𝑗
(𝑄𝑗 − 𝑄𝑗−1)

∞
𝑗=𝑘+1  for every 𝑘, 𝑛 ≥ 1, then for any 

sequence space 𝑌, the following statements are equivalent. 

(i) 𝐴 ∈ (𝑏𝑣(𝑅) ∶  𝑌). 
(ii) (𝑎𝑛𝑘)𝑘 ∈ [𝑏𝑣(𝑅)]

𝛽 for every 𝑛 ≥ 1 and 𝐸 ∈ (𝑙1 ∶  𝑌). 
Proof. 
(𝑖) ⟹ (𝑖𝑖) Take any �̅� ∈ 𝑏𝑣(𝑅). Since 𝐴 ∈ (𝑏𝑣(𝑅) ∶  𝑌), then 𝐴(�̅�) exist and 𝐴(�̅�) ∈ 𝑌. Therefore, 

for every 𝑛 ≥ 1, ∑ 𝑎𝑛𝑘  𝑥𝑘
∞
𝑘=1  is convergent, so (𝑎𝑛𝑘)𝑘 ∈ [𝑏𝑣(𝑅)]

𝛽. Take any �̅� ∈ 𝑙1, then there exists 

�̅� ∈ 𝑏𝑣(𝐶) such that �̅� = Ψ(�̅�). Since for every 𝑛 ≥ 1, 

𝐴𝑛(�̅�) = ∑𝑎𝑛𝑘  𝑥𝑘

∞

𝑘=1

= 𝑎𝑛1
1

𝑞1
𝑄1𝑦1 +∑𝑎𝑛𝑘

∞

𝑘=2

(
1

𝑞𝑘
(𝑄𝑘 − 𝑄𝑘−1)∑𝑦𝑗

𝑘−1

𝑗=1

+
1

𝑞𝑘
𝑄𝑘𝑦𝑘) =∑𝑒𝑛𝑘 𝑦𝑘

∞

𝑘=1

= 𝐸𝑛(�̅�), 
then 𝐴(�̅�) = 𝐸(�̅�). These imply 𝐸(�̅�) ∈ 𝑌 for every �̅� ∈ 𝑙1, i.e. 𝐸 ∈ (𝑙1 ∶ 𝑌). 
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(𝑖𝑖) ⟹ (𝑖) Let �̅� ∈ 𝑏𝑣(𝑅) be an arbitrary. Since for each 𝑛 ≥ 1 satisfy (𝑎𝑛𝑘)𝑘 ∈ [𝑏𝑣(𝑅)]
𝛽, then 

∑ 𝑎𝑛𝑘 𝑥𝑘
∞
𝑘=1  is convergent, or in other words 𝐴(�̅�) exists. Since, 𝐴(�̅�) = 𝐸(�̅�) for all �̅� ∈ 𝑙1 and 𝐸 ∈
(𝑙1 ∶  𝑌), then 𝐴(�̅�) ∈ 𝑌. So, 𝐴 ∈ (𝑏𝑣(𝑅) ∶  𝑌). 
 

Theorem 3.14 Let 𝑞𝑘 > 0 and 𝑄𝑘 = ∑ 𝑞𝑗
𝑘
𝑗=1  for all integer 𝑘 ≥ 1. If 𝐵 = (𝑏𝑛𝑘) and 𝐹 = (𝑓𝑛𝑘) are 

infinite matrices  such that 𝑓1𝑘  =
1

𝑄1
𝑞1𝑏1𝑘 and 𝑓𝑛𝑘 =  (

1

𝑄𝑛
−

1

𝑄𝑛−1
)∑ 𝑞𝑗 𝑏𝑗𝑘

𝑛−1
𝑗=1 +

1

𝑄𝑛
𝑞𝑛 𝑏𝑛𝑘 for every 

𝑘, 𝑛 ≥ 2, then for any sequence space 𝑌, 

𝐵 ∈ (𝑌 ∶  𝑏𝑣(𝑅)) ⟺ 𝐹 ∈ (𝑌 ∶  𝑙1). 
Proof. 

(⟹) Let �̅� ∈ 𝑌. Since 𝐵 ∈ (𝑌 ∶  𝑏𝑣(𝑅)), then 𝐵(�̅�) exist and 𝐵(�̅�) ∈ 𝑏𝑣(𝑅). Further, by applying 

Ψ, we find Ψ(𝐵(�̅�)) ∈ 𝑙1. Notice that Ψ1(𝐵(�̅�)) =
1

𝑄1
𝑞1  ∑ 𝑏1𝑘 𝑦𝑘

∞
𝑘=1 = 𝐹1(�̅�)  and 

Ψ𝑛 (𝐵(�̅�)) = (
1

𝑄𝑛
−

1

𝑄𝑛−1
)∑𝑞𝑗∑𝑏𝑗𝑘 𝑦𝑘

∞

𝑘=1

𝑛−1

𝑗=1

+
1

𝑄𝑛
𝑞𝑛∑𝑏𝑛𝑘  𝑦𝑘

∞

𝑘=1

= 𝐹𝑛(�̅�), 

𝑓or every 𝑛 ≥ 2. So, 𝐹(�̅�) = Ψ(𝐵(�̅�)) ∈ 𝑙1 for each �̅� ∈ 𝑌. This implies 𝐹 ∈ (𝑌 ∶  𝑙1). 

(⟸) Let �̅� ∈ 𝑌. Since 𝐹 ∈ (𝑌 ∶  𝑙1), then 𝐹(�̅�) exist and 𝐹(�̅�) ∈ 𝑙1. Since, 𝐹(�̅�) = Ψ(𝐵(�̅�)) and 𝐹 ∈

(𝑌 ∶  𝑙1), then Ψ(𝐵(�̅�)) ∈  𝑙1. This implies 𝐵(�̅�) ∈ 𝑏𝑣(𝑅). So, we obtain 𝐵 ∈ (𝑌 ∶  𝑏𝑣(𝑅)). 

 

3.3. The matrix domain of 𝒃𝒗 with the Generalized Weighted matrix 

Let 𝑢𝑘 and 𝑣𝑘 be non zero real numbers for all integer 𝑘 ≥ 1. The matrix 𝐺 = (𝑔𝑛𝑘),  
 

𝑔𝑛𝑘 = {
𝑢𝑛𝑣𝑘 , 1 ≤ 𝑘 ≤ 𝑛
0       , 𝑘 > 𝑛

 , 

 

is called a generalized weighted matrix. If Γ = Δ𝐺, then 

 

Γ = (

𝑢1𝑣1 0 0      ⋯
(𝑢2 − 𝑢1)𝑣1 𝑢2𝑣2 0      ⋯
(𝑢3 − 𝑢2)𝑣1

⋯
(𝑢3 − 𝑢2)𝑣2

⋯

𝑢3𝑣3
⋯

⋯
⋯

). 

 

By following the Theorem 3.1, we find the fact that 𝑙1 ≅ 𝑏𝑣 ≅ 𝑏𝑣(𝐶) ≅ 𝑏𝑣(𝑅) ≅ 𝑏𝑣(𝐺), i.e. 

the sequence spaces 𝑙1, 𝑏𝑣, 𝑏𝑣(𝐶), 𝑏𝑣(𝑅) and 𝑏𝑣(𝐺) are isomorphic each other. In the next 

theorem, we prove the inclusion relationship between the sequence space 𝑏𝑣, 𝑏𝑣(𝐶),
𝑏𝑣(𝑅) and 𝑏𝑣(𝐺). 
Theorem 3.15 For any Riesz matrix 𝑅, there exists a generalized weighted matrix 𝐺 such that 

𝑏𝑣(𝑅) ⊆  𝑏𝑣(𝐺). 
 

Proof. Let 𝑞𝑘 be any positive real number and 𝑄𝑘 = ∑ 𝑞𝑗
𝑘
𝑗=1  for every 𝑘 ≥ 1. Suppose that 𝑅 

is a Riesz matrix related to (𝑞𝑘) and (𝑄𝑘). Take any �̅� ∈ 𝑏𝑣(𝑅), then 𝑅(�̅�) =
1

𝑄𝑛
∑ 𝑞𝑘  𝑥𝑘
𝑛
𝑘=1 ∈ 𝑏𝑣. 

By defining matrix 𝐺 = (𝑔𝑛𝑘) by  

𝑔𝑛𝑘 = {

𝑞𝑘
𝑄𝑘
 , 1 ≤ 𝑘 ≤ 𝑛

0    , 𝑘 > 𝑛
, 

 

then we obtain 𝐺(�̅�) = (𝑢𝑛 ∑ 𝑣𝑘  𝑥𝑘
𝑛
𝑘=1 ) = (

1

𝑄𝑛
∑ 𝑞𝑘 𝑥𝑘
𝑛
𝑘=1 ) =  𝑅(�̅�). It means, �̅� ∈ 𝑏𝑣(𝐺). So, the 

assertion that 𝑏𝑣(𝑅) ⊆ 𝑏𝑣(𝐺) is proved. 
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Next, defines the space 𝑏𝑣0(𝐺) = {�̅� ∈ 𝜔 ∶ 𝐺(�̅�) ∈ 𝑏𝑣0} and  𝑐0(𝐺) = {�̅� ∈ 𝜔 ∶ 𝐺(�̅�) ∈ 𝑐0}. 
Note that 𝑏𝑣0(𝐺) = 𝑏𝑣(𝐺) ∩  𝑐0(𝐺). Next, given definition of Schauder basis and will be shown two 

Schauder basis of 𝑏𝑣(𝐺), which is presented in the following theorem. 

Theorem 3.16 Suppose that for every 𝑘 ≥ 1, 𝑢𝑘 ≠ 0, 𝑣𝑘 ≠  0, and  𝑡(𝑘) = ( 𝑡𝑛
(𝑘)) ∈ 𝑏𝑣(𝐺) is a 

sequence defined by 𝑡𝑛
(𝑘) = 0 (1 ≤ 𝑛 < 𝑘),  𝑡𝑛

(𝑘) =
(−1)𝑛−𝑘

𝑢𝑘  𝑣𝑛
 (𝑘 ≤ 𝑛 ≤ 𝑘 + 1), and 𝑡𝑛

(𝑘) = 0 (𝑛 > 𝑘 +

1). Then the sequence (𝑡(𝑘)) is a Schauder basis of 𝑏𝑣(𝐺). 
 

Proof. Take any �̅� ∈ 𝑏𝑣(𝐺). For every 𝑘 ≥ 1, define 𝜆𝑘 = 𝐺𝑘(�̅�) = 𝑢𝑘  ∑ 𝑣𝑗 𝑥𝑗
𝑘
𝑗=1 , then �̅� =

∑ 𝜆𝑘
∞
𝑘=1 𝑡(𝑘). So, the sequence (𝑡(𝑘)) is a Schauder basis of 𝑏𝑣(𝐺). 

 

Theorem 3.17 Suppose that for every 𝑘 ≥ 1, 𝑢𝑘 ≠ 0, 𝑣𝑘 ≠  0, and  𝑡(𝑘) = ( 𝑡𝑛
(𝑘)) ∈ 𝑏𝑣(𝐺) is a 

sequence defined by 𝑡𝑛
(𝑘) = 0 (1 ≤ 𝑛 < 𝑘),  𝑡𝑛

(𝑘) =
1

𝑢𝑛 𝑣𝑛
 (𝑛 = 𝑘), and 𝑡𝑛

(𝑘) =
1

𝑣𝑛
(
1

𝑢𝑛
−

1

𝑢𝑛−1
) (𝑛 >

𝑘). Then the sequence (𝑡(𝑘)) is a Schauder basis of 𝑏𝑣(𝐺). 
 

Proof. Let �̅� ∈ 𝑏𝑣(𝐺). For every 𝑘 ≥ 1, choose 𝛼𝑘 = Γ𝑘(�̅�). By analog with Theorem 3.4, �̅� =
∑ 𝛼𝑘
∞
𝑘=1 𝑡(𝑘). Hence, the sequence (𝑡(𝑘)) is a Schauder basis of 𝑏𝑣(𝐺). 

 

In the next theorems, we present some characterizations of the matrix transformation classes 

of the space 𝑏𝑣(𝐺). 
Theorem 3.18 Let 𝑢𝑘 ≠ 0 and 𝑣𝑘 ≠ 0 be non zero real numbers for all 𝑘 ≥ 1, 𝐴 = (𝑎𝑛𝑘) and 𝐸 =

(𝑒𝑛𝑘) infinite matrices such that 𝑒𝑛𝑘 =
𝑎𝑛𝑘

𝑢𝑘 𝑣𝑘
∑

𝑎𝑛𝑗

𝑣𝑗
(
1

𝑢𝑗
−

1

𝑢𝑗−𝑖
)∞

𝑗=𝑘+1  for every 𝑘, 𝑛 ≥ 1. For any 

sequence space 𝑌, 

 𝐴 ∈ (𝑏𝑣(𝐺): 𝑌) ⟺ (𝑎𝑛𝑘)𝑘 ∈ [𝑏𝑣(𝐺)]
𝛽 for every 𝑛 ≥ 1 and 𝐸 ∈ (𝑙1 ∶  𝑌). 

 

Proof. 

(⟹) Let �̅� ∈ 𝑏𝑣(𝐺), then 𝐴(�̅�) exist and 𝐴(�̅�) ∈ 𝑌. Therefore, for every 𝑛 ≥ 1, it is true that 

∑ 𝑎𝑛𝑘 𝑥𝑘
∞
𝑘=1  is convergent. So, we obtain that (𝑎𝑛𝑘)𝑘 ∈ [𝑏𝑣(𝐺)]

𝛽. Further, take any �̅� ∈ 𝑙1. Then 

there exists �̅� ∈ 𝑏𝑣(𝐺) such that �̅� = Γ(�̅�). Since,  

𝐴𝑛(�̅�) =  ∑𝑎𝑛𝑘  𝑥𝑘

∞

𝑘=1

=
𝑎𝑛1
𝑢1𝑣1

𝑦1 + ∑𝑎𝑛𝑘 

∞

𝑘=2

(
1

𝑣𝑘
(
1

𝑢𝑘
−

1

𝑢𝑘−1
)∑𝑦𝑗

𝑘−1

𝑗=1

+
1

𝑢𝑘𝑣𝑘
𝑦𝑘) =∑𝑒𝑛𝑘 𝑦𝑘

∞

𝑘=1

= 𝐸𝑛(�̅�) 
for every 𝑛 ≥ 1, then 𝐴(�̅�) =  𝐸(�̅�). Since, 𝐴(�̅�) ∈ 𝑌, then 𝐸(�̅�) ∈ 𝑌. Hence, 𝐸 ∈  (𝑙1 ∶  𝑌). 
 

(⟸) Let �̅� ∈ 𝑏𝑣(𝐺). Since (𝑎𝑛𝑘)𝑘 ∈ [𝑏𝑣(𝐺)]
𝛽 for every 𝑛 ≥ 1, then ∑ 𝑎𝑛𝑘 𝑥𝑘

∞
𝑘=1  is convergent. 

Hence, 𝐴(�̅�) exists and 𝐴(�̅�) = 𝐸(�̅�) ∈ 𝑙1. So, we have proved that 𝐴 ∈ (𝑏𝑣(𝐺) ∶  𝑌). 
 

Theorem 3.19 Let 𝑢𝑘 ≠ 0 and 𝑣𝑘 ≠ 0 be non zero real numbers for all 𝑘 ≥ 1, 𝐵 = (𝑏𝑛𝑘) and 𝐹 =
(𝑓𝑛𝑘) infinite matrices such that 𝑓1𝑘 = 𝑢1 𝑣1 𝑏1𝑘 and 𝑓𝑛𝑘 = (𝑢𝑛 − 𝑢𝑛−1)∑ 𝑣𝑗

𝑛−1
𝑗=1 𝑏𝑗𝑘 + 𝑢𝑛 𝑣𝑛 𝑏𝑛𝑘 for 

every 𝑛 ≥ 2. Then for any sequence space 𝑌, 

𝐵 ∈ (𝑌 ∶  𝑏𝑣(𝐺)) ⟺ 𝐹 ∈ (𝑌 ∶  𝑙1). 
 

Proof. 

(⟹) Let �̅� ∈ 𝑌. Since 𝐵 ∈ (𝑌 ∶  𝑏𝑣(𝐺)), then 𝐵(�̅�) exists and 𝐵(�̅�) ∈ 𝑏𝑣(𝐺). This implies 

Γ (𝐵(�̅�)) ∈  𝑙1. Since, Γ1(𝐵(�̅�)) = 𝑢1 𝑣1∑ 𝑏1𝑘
∞
𝑘=1 𝑦𝑘 = 𝐹1(�̅�) and 
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Γ𝑛(𝐵(�̅�) = (𝑢𝑛 − 𝑢𝑛−1)∑𝑣𝑗

𝑛−1

𝑗=1

∑𝑏𝑗𝑘

∞

𝑘=1

𝑦𝑘 + 𝑢𝑛  𝑣𝑛∑𝑏𝑛𝑘

∞

𝑘=1

𝑦𝑘 = 𝐹𝑛(�̅�) 

 

for every 𝑛 ≥ 2, then 𝐹(�̅�) = Γ(𝐵(�̅�)) ∈ 𝑙1. Hence, 𝐹 ∈ (𝑌 ∶  𝑙1). 

(⟸) Let �̅� ∈ 𝑌. Since 𝐹 ∈ (𝑌 ∶  𝑙1), then 𝐹(�̅�) exists and 𝐹(�̅�) ∈  𝑙1. Since 𝐹(�̅�) = Γ(𝐵(�̅�)) and 𝐹 ∈

(𝑌 ∶  𝑙1), then we obtain Γ(𝐵(�̅�)) ∈ 𝑙1. This implies 𝐵(�̅�) ∈ 𝑏𝑣(𝐺). So, 𝐵 ∈ (𝑌 ∶  𝑏𝑣(𝐺)). 
 

4. CONCLUSION 

Some characterizations of the matrix domains of the bv sequence space that are defined by several 

triangle infinite matrices, namely the Cesaro mean of order one matrix, the Generalized Weighted 

matrix, and the Riesz matrix, have been formulated. Several things related to the matrix domain, such 

as isomorphism of sequence spaces, inclusion relations of several matrix domains of a sequence 

space, 𝐵𝐾-spaces, Schauder bases, 𝛼-duals, 𝛽-duals, and 𝛾-duals, are also deduced. 
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