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Copula functions are powerful statistical tools for modeling the dependency 

structure between random variables and have been widely applied in domains such 

as finance, oceanography, and hydrology. However, their application in image 

processing, particularly for image forgery detection, remains underexplored. This 

study proposes a novel blind copy-move forgery detection algorithm based on 

copula-based mutual information, which evaluates statistical dependencies 

between overlapping image blocks. By leveraging copula theory, the method 

accurately identifies duplicated regions within a single image without requiring 

prior knowledge or external references. Experimental results on the CoMoFoD 

dataset demonstrate that the proposed method achieves high precision, recall, and 

F1-scores across various manipulation types, including translation, scaling, and 

rotation, and shows resilience to post-processing operations such as JPEG 

compression, blurring, noise, and color reduction. Comparative analysis reveals 

that the copula-based approach outperforms classical methods such as SIFT, 

SURF, and DWT-SVD. In addition to quantitative performance, qualitative 

visualizations confirm that the algorithm effectively localizes forged regions in 

complex scenes with minimal false detections. These findings highlight the 

potential of copula functions as a robust and efficient framework for digital image 

forensics. 
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1. Introduction 

Forgery in photography poses a significant challenge in today's digital era, where the dissemination of 

information heavily relies on visual content. The ease with which digital images can be manipulated and 

redistributed through various platforms has raised concerns regarding their authenticity [1]. Although 

numerous advancements in digital image forensics have emerged, the increasing sophistication of tampering 

techniques continues to demand more robust and statistically grounded detection methods. 

 

One promising direction in this context is the application of statistical dependency modelling, especially 

through the use of copula functions. Copulas are powerful tools in multivariate statistics for capturing complex 

and non-linear dependency structures between random variables. They have been extensively applied in fields 

such as finance, hydrology, and epidemiology, and are now being explored in the realm of image processing. 
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In the context of image analysis, copulas provide a mathematical framework to model pixel or block level 

dependencies that are often disrupted when an image is tampered with [2]. In this study, we utilize copula-

based mutual information to detect subtle inconsistencies and structural anomalies within digital images, 

particularly focusing on copy-move forgery detection. This approach does not merely rely on pixel intensity 

differences, as in classical metrics like Mean Squared Error (MSE) or Peak Signal-to-Noise Ratio (PSNR), but 

instead leverages the underlying statistical relationships within image blocks [3-4]. Our method is applied and 

validated using standard RGB imagery from the CoMoFoD dataset; however, the underlying copula 

framework is sufficiently general and could be extended for use with more complex image types, such as 

hyperspectral data, in future work. 

 

This research is also motivated by our previous work on the integration of copula models in applied statistical 

contexts, particularly in the study titled " Traffic Density Probability Analysis Using Markov Chain Monte 

Carlo Simulation Integrated with Bivariate Copula Statistics", where the copula function demonstrated strong 

capabilities in modelling interdependent random variables. Building upon that foundation, this current study 

advances the use of copula theory by adapting it for visual forensic applications, offering a robust and flexible 

statistical basis for image forgery detection. Building upon this foundation, the current study extends the 

applicability of copula-based dependency modelling into the domain of digital image forensics. While the 

earlier study focused on the temporal and probabilistic behaviour of traffic density, both cases share common 

methodological backbone copulas are used to detect and quantify hidden patterns of dependence that become 

disrupted under specific conditions. In the traffic study, these disruptions were caused by stochastic variability 

in traffic flows, whereas in this work, they are caused by localized manipulations within digital images. 

 

2. Literature Review 

To begin, we explore the metrics for assessing image quality. In addition, we explore a variety of image quality 

evaluation techniques found in prior research, encompassing both human perception-based assessments and 

computational measurement methods. Following this, we outline the notion of copy-move image tampering 

and highlight several detection approaches developed by scholars to identify such manipulations in digital 

visuals. This structure allows us to establish a foundation before presenting our copula-based algorithm, which 

is designed to outperform traditional approaches in both detection accuracy and robustness against image 

manipulation. 

2.1. Analysis of Visual Quality in Digital Images 

In the domain of digital image processing, maintaining and evaluating the visual quality of images is essential 

for ensuring the effectiveness of operations such as compression, enhancement, transmission, storage, and 

authentication. Image quality is not merely a matter of visual appeal but is critical in applications involving 

medical imaging, surveillance, forensic analysis, and multimedia communications, where accuracy and fidelity 

are paramount. Detecting any form of distortion, degradation, or manipulation either introduced during image 

processing or deliberately through tampering requires a reliable framework for quality assessment [5]. 

 

From a mathematical and statistical perspective, the evaluation of image quality seeks to quantify the degree 

of similarity or dissimilarity between an original image and its altered counterpart. This quantification is 

necessary to detect artifacts, noise, and inconsistencies that may not be easily perceived by the human eye [6]. 

To address these challenges, researchers have developed a wide array of methods to assess image quality, 

broadly categorized into subjective and objective techniques. 

 

Subjective image quality assessments rely on human perception and interpretation. These approaches are 

essential because they align with the actual experience of end-users, thus serving as a benchmark for evaluating 

objective models. Commonly used subjective techniques include the Single Stimulus (SS) method, Quality 

Ruler (QR) method, and Mean Opinion Score (MOS). The SS method presents one image (original or 

distorted) at a time for observers to rate, typically on a numerical or categorical scale. The MOS is then 

calculated as the arithmetic mean of these scores: 

 

𝑀𝑂𝑆 =
1

𝑁
∑ 𝑆𝑖

𝑁

𝑖=1

 

 

(1) 
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where 𝑆𝑖 is the score given by the 𝑖𝑡ℎ observer, and 𝑁 is the number of evaluators [7-8]. However, due to 

potential variability in human perception, the Quality Ruler method was developed to reduce inconsistencies 

by presenting reference-quality levels for comparison. Several well-known techniques are categorized under 

full-reference image quality assessment, such as Mean Squared Error (MSE), Peak Signal-to-Noise Ratio 

(PSNR), Visual Information Fidelity (VIF), Universal Quality Index (UQI), and Structural Similarity Index 

Measure (SSIM) [9]. Figure 1 presents an overview of the main metrics commonly employed for evaluating 

image quality. 

 

 
 

Figure 1. Image quality metrics 

 

Objective assessments, on the other hand, utilize statistical and mathematical models to quantify visual fidelity 

without relying on human judgment. These methods can be further subdivided into: 

• No-reference (NR) is evaluating image quality without any reference, 

• Reduced-reference (RR) is uses partial data from the original image, and 

• Full-reference (FR) is requires access to both original and distorted images. 

 

In our study, we emphasize the use of full-reference image quality metrics due to their robust quantitative 

framework for evaluating the impact of distortion. These metrics compare a distorted image directly with its 

reference version, enabling precise measurement of visual degradation [10]. Among the well-established 

statistical measures in this category is the Mean Squared Error (MSE), which calculates the average of the 

squared differences between corresponding pixel values in the reference and distorted images. MSE is 

formulated as: 

 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑[𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2

𝑛

𝑗=1

𝑚

𝑖=1

 

 

where 𝐼(𝑖, 𝑗) and 𝐾(𝑖, 𝑗) represent the pixel intensities of the reference and distorted images, respectively, over 

an 𝑚 × 𝑛 image [11]. Despite its simplicity, MSE does not always correlate well with human visual perception. 

To address this limitation, another commonly used metric is the Peak Signal-to-Noise Ratio (PSNR), which 

expresses the quality of an image in decibels and is derived from the MSE value. PSNR is defined as: 

 

𝑃𝑆𝑁𝑅 = 10 log10

𝐿2

𝑀𝑆𝐸
 

 

Image quality 
assessment 

metrics

Objective

No Reference
Reduced 

Reference
Full Reference

Statistical 
Oriented

MSE PSNR

Human vision 
system 

oriented

SSIM UQI VIF

Subjective

Single Stimulus Quality ruler MOS

(3) 

(2) 



Journal of Research in Mathematics Trends and Technology Vol.7, No.1 (2025) 038–048 41 

where 𝐿 denotes the maximum possible pixel intensity (e.g., 255 for 8-bit images) [12]. Higher PSNR values 

generally indicate better image quality. However, like MSE, PSNR often fails to capture perceptual distortions 

that are important to the human eye. To overcome these shortcomings, more advanced metrics have been 

developed, such as the Structural Similarity Index Measure (SSIM), which considers luminance, contrast, and 

structural information to better align with the Human Visual System (HVS). Additionally, metrics like the 

Universal Quality Index (UQI) and Visual Information Fidelity (VIF) incorporate perceptual models and 

statistical dependencies to provide more accurate quality assessments. These full-reference metrics collectively 

form the basis of reliable and reproducible image quality evaluation, particularly in research involving image 

compression, enhancement, and forgery detection. 

 

2.2. Image Forgery 

In the past, photographs were widely regarded as reliable representations of reality. However, in the digital 

age, that perception has significantly shifted. The popular adage "seeing is believing" no longer holds the same 

weight, as digital manipulation tools have become increasingly accessible and sophisticated. With just minimal 

technical skill, anyone can alter or fabricate images in ways that are difficult to detect with the naked eye. As 

a result, the process of verifying an image’s authenticity has evolved into a complex challenge that intersects 

both technical and ethical domains. To address this issue, the field of digital image forensics has rapidly 

emerged, focusing on the analysis and validation of visual content to ensure its integrity. This interdisciplinary 

field combines elements of signal processing, computer vision, and statistics to develop algorithms capable of 

detecting tampering. Its relevance is underscored by wide-ranging applications in journalism, law enforcement, 

sports, insurance claims, and medical documentation, where image authenticity is paramount [13]. 

 

Image forgery itself is generally classified into three main categories: (a) copy-move forgery, where parts of 

an image are duplicated within the same image; (b) image splicing, where content from one image is inserted 

into another; and (c) image retouching, which involves enhancing or altering image features without external 

content. This study is particularly focused on the first type: copy-move forgery (CMF). Copy-move forgery 

also referred to as cloning—entails selecting a region from an image and pasting it elsewhere within the same 

image to obscure or replicate certain features. To further obfuscate the manipulation, perpetrators often apply 

geometric transformations such as rotation, scaling, or translation, and introduce post-processing effects like 

blurring, compression artifacts, or noise injection. These additional layers of alteration significantly hinder the 

ability of traditional detection methods, which often rely solely on visual cues or pixel-level comparisons [14]. 

 

From a statistical standpoint, detecting CMF requires algorithms that can analyze self-similarity patterns within 

the image while accounting for spatial dependencies and structural consistency. Numerous techniques have 

been proposed to address this, ranging from block-matching algorithms to key point-based approaches and 

frequency domain analysis. However, recent studies emphasize the importance of incorporating statistical 

models—such as copula-based mutual information—to enhance robustness against post-processed forgeries. 

Figure 2 presents several examples of original images and their corresponding manipulated versions, clearly 

illustrating how copy-move forgery can alter the visual narrative of an image in subtle yet significant ways. 

 
Figure 2. Visual representations of the copy-move image tampering technique 
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Figure 2 provides visual representations of the copy-move forgery technique, a common image manipulation 

method where a region of an image is copied and pasted within the same image to conceal or duplicate content. 

In each example, the original image is displayed alongside its manipulated version, allowing a clear 

comparison of the modifications made. These visual comparisons are essential in understanding how subtle 

alterations—such as duplicating a background object or removing a subject—can significantly alter the 

semantic meaning of an image [15]. Such manipulations are often performed with the intent to deceive viewers, 

and they typically preserve the local statistical properties of the image (such as texture, color distribution, and 

noise), making manual detection extremely difficult. In many cases, the duplicated regions are further refined 

using geometric transformations such as scaling, rotation, or blurring, thus complicating the detection process. 

 

3. Method 

In recent years, numerous methods have been proposed for manipulating digital images and videos, typically 

categorized into three major types: copy-move forgery, image splicing, and image retouching. Among these, 

copy-move forgery (CMF) poses a unique challenge due to the fact that the duplicated region originates from 

the same image, making it difficult to detect using conventional similarity measures. 

To address this, we propose a blind copy-move forgery detection algorithm that requires only the forged image 

for analysis, without any auxiliary data or digital watermark. The algorithm falls under passive statistical 

detection methods, which rely on the analysis of pixel-level and block-level dependencies rather than visible 

anomalies. Unlike visual-based approaches, statistical methods are more robust in detecting subtle 

manipulations that preserve the general appearance of the image. 

3.1. Justification of Design Choices 

In this study, we divide the image into overlapping blocks of size 16 × 16 pixels, a widely accepted 

configuration in many image forgery detection algorithms. This block size offers a practical trade-off between 

resolution and robustness. From a statistical perspective, a block of 16 × 16 contains 256-pixel intensity values, 

which is sufficient to extract meaningful statistical patterns—such as texture, gradient distribution, and spatial 

correlation—without being too computationally expensive. Smaller blocks (e.g., 8 × 8) tend to capture 

insufficient contextual information, which may lead to unstable estimation of statistical properties, especially 

when calculating joint distributions using copula functions. Conversely, larger blocks (e.g., 32 × 32 or 64 × 

64) increase the risk of missing localized forgeries and may smooth out important variations due to 

overgeneralization. Empirical studies also show that 16 × 16 provides a balanced sample size for local 

statistical analysis while maintaining sensitivity to small forgeries. 

3.2. Statistical Foundation and Copula-Based Similarity 

As discussed in the literature review, traditional image quality assessment methods such as Mean Squared 

Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) primarily measure pixel-wise intensity differences 

between reference and distorted images. While these metrics are simple and computationally efficient, they 

often fail to reflect perceptual similarity and are sensitive to minor variations that do not necessarily indicate 

forgery. More perceptually aligned measures such as Structural Similarity Index Measure (SSIM) have 

improved this limitation by incorporating luminance and contrast, but still rely on assumptions of linear 

dependencies. 

In contrast, our proposed method is grounded in copula theory, which provides a more flexible and statistically 

rigorous framework for modelling the joint dependency structures between image blocks. Unlike PSNR or 

SSIM, which are limited to comparing aggregate pixel-level differences, copula-based mutual information 

captures non-linear and higher-order statistical relationships that are often disrupted in manipulated images. 

This statistical framework becomes especially powerful in detecting copy-move forgeries, where the 

duplicated regions may preserve local textures and colour distributions, but differ in spatial or structural 

alignment. By modelling the statistical dependence between two regions, copula functions allow us to identify 

subtle correlations that traditional similarity measures cannot detect. Using Sklar’s Theorem, we express the 

joint distribution 𝐹𝑋𝑌(𝑥, 𝑦) of two image block features as: 

𝐹𝑋𝑌(𝑥, 𝑦) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) (4) 
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where 𝐶 is the copula function, and 𝐹𝑋, 𝐹𝑌 are the marginal cumulative distributions of the respective block 

features. This separation of marginals from dependency structure enables the algorithm to focus specifically 

on relational patterns, which are more resilient to transformations such as rotation, scaling, or compression. 

We then compute mutual information (MI) using the copula density 𝑐(𝑢, 𝑣) to quantify the degree of 

dependence between the blocks: 

𝐼(𝑋, 𝑌) = ∫ ∫ 𝑐(𝑢, 𝑣) log (
𝑐(𝑢, 𝑣)

𝑓𝑈(𝑢)𝑓𝑉(𝑣)
)  𝑑𝑢𝑑𝑣 

A high value of  𝐼(𝑋, 𝑌) suggests strong statistical similarity, indicating that two image blocks may have 

originated from the same region—i.e., a potential copy-move forgery. This approach provides a statistically 

grounded extension of the full-reference quality assessment framework described in Section 2, and aligns with 

the overall goal of using statistical dependency as a tool for image analysis and tamper detection. 

3.3. Forgery Detection Algorithm 

Building upon the copula-based statistical framework described above, we implement a step-by-step forgery 

detection pipeline. The algorithm is designed to operate in a blind manner, relying solely on the input image 

without reference to external sources or ground truth. The steps are as follows: 

1. Image Pre-processing 

The input image suspected of forgery is first converted into a grayscale representation. This 

transformation reduces the image's dimensionality while retaining critical structural information, 

thereby improving both speed and consistency in subsequent analysis. 

2. Block Division 

A sliding window of size 16 × 16 pixels moves across the grayscale image with a one-pixel step, 

resulting in (𝑀 − 𝑆 + 1) × (𝑁 − 𝑆 + 1) overlapping blocks, where 𝑀 × 𝑁 is the image size and 𝑆 =
16 

3. Block Decomposition 

Each block is decomposed using the steerable pyramid transformation, as described in Section 3. This 

technique facilitates multi-scale, multi-orientation feature extraction while preserving local spatial 

details. 

4. Feature Extraction 

From the decomposed blocks, we extract sub-band 1 (4 × 4 coefficients) to represent each block, 

reducing feature dimensionality while retaining essential information. 

5. Matrix Construction 

All feature vectors are stacked vertically to construct a matrix of size 1 × 16 vector, forming a matrix 

of size 𝐵 × 16, where 𝐵 is the total number of overlapping blocks generated in the previous step. 
6. Quantization 

To enhance robustness and reduce computational complexity, the continuous values in the feature 

matrix are quantized into discrete levels. This process also mitigates sensitivity to minor noise or 

intensity variations. 

7. Sorting 

The matrix rows are lexicographically sorted to accelerate similarity comparisons and facilitate block 

matching. Sorting improves computational efficiency by reducing redundant pairwise evaluations. 

8. Similarity Computation 

Copula-based mutual information is computed between all pairs of block vectors. If the mutual 

information score exceeds a threshold 𝐻, the corresponding blocks are considered matched. 

9. Distance Filtering 

Matched blocks are retained only if they are separated by a spatial distance of approximately 100 

pixels, a heuristic chosen to distinguish between adjacent texture repetitions and actual duplicated 

regions. 

10. Morphological Processing 

Morphological operations (e.g., dilation, closing) are applied to clean up the detected regions and 

merge fragmented block matches. 

11. Forgery Validation 

A secondary validation step is applied to eliminate false positives based on geometric criteria such as 

region shape, continuity, and area. 

(5) 
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12. Output Visualization 

Finally, the detected forged regions are overlaid on the original image for visualization. This step 

highlights the manipulated areas, enabling visual interpretation and verification. 

The overall flow of the proposed detection algorithm is visually summarized in Figure 3, which presents the 

step-by-step process from image input to final forgery localization. This flowchart aids in understanding the 

pipeline structure and highlights the integration of statistical analysis within each stage. 

 
 

Figure 3. Blind copy moves forgery detection algorithm's flowchart 

4. Result and Discussions 

This section presents a detailed performance evaluation of the proposed copula-based blind copy-move forgery 

detection algorithm. The evaluation was conducted using the CoMoFoD (Copy-Move Forgery Detection) 

dataset, which is widely used for benchmarking image forgery detection techniques due to its diversity of 

manipulations and availability of ground truth masks. 

4.1. Dataset Configuration and Testing Strategy 

We selected 512×512-sized images from CoMoFoD, focusing on three manipulation categories: translation, 

rotation, and scaling. Each category consists of 40 original images and their corresponding forged versions, 

each subjected to 25 post-processing variations, including JPEG compression, blurring, noise addition, and 

color reduction. In total, 3000 manipulated images were tested (3 categories × 40 images × 25 versions). 

4.2. Quantitative Evaluation Metrics 

The metrics used in this evaluation are grounded in fundamental principles of binary classification in statistical 

analysis. In the context of image forgery detection, the output of the algorithm is compared to ground truth 

binary masks to classify each image block or region as either correctly or incorrectly identified. This 

classification leads to four key outcomes: 

• True Positive (TP) for forged region correctly identified as forged. 

• False Positive (FP) for genuine (non-forged) region incorrectly identified as forged. 

• True Negative (TN) for genuine region correctly identified as non-forged. 

• False Negative (FN) for forged region that was not detected. 
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These four quantities serve as the basis for calculating performance metrics such as precision, recall, F1-score, 

accuracy, and false positive rate. To assess the accuracy and robustness of the proposed method, we applied 

the following standard performance metrics: 

• Precision 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 measures the proportion of correctly detected forged regions among all detected 

as forged. 

• Recall 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 indicates the proportion of actual forgeries that were successfully detected. 

• F1-Score 𝐹1 = 2 ∙
𝑃.𝑅

𝑃+𝑅
  provides a balanced metric that combines precision and recall. 

 

• Accuracy 𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  reflects the overall correctness of classification. 

 

• False Positive Rate 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 shows how often genuine regions are wrongly flagged as forged. 

 

These performance metrics are crucial in evaluating the detection capabilities of the proposed copula-based 

method when applied to the CoMoFoD dataset. In the context of the CoMoFoD dataset, which contains labeled 

binary masks for evaluation, these metrics serve not only to assess detection accuracy but also to validate the 

statistical reliability of the copula-based mutual information model. Because copula functions model the 

dependency structure between duplicated regions, the use of these metrics helps quantify how well such 

dependency structures translate into correct forgery detection across various manipulation types. 

4.3. Detection Results 

Table 1 summarizes the detection performance across the three manipulation types. Results indicate that the 

copula-based method maintains high precision and recall, particularly under translation and scaling, where 

forged regions preserve statistical dependencies. 

Table 1. Detection Performance for Different Manipulation Types 

Manipulation Type Precision Recall F1-Score Accuracy APR 

Translation 0.94 0.91 0.925 0.93 0.05 

Rotation 0.89 0.85 0.87 0.88 0.08 

Scaling 0.92 0.89 0.905 0.91 0.06 

 

These results demonstrate that the method is highly effective even when geometric transformations are applied. 

The higher precision and recall in translation and scaling indicate that the algorithm successfully identifies 

statistical similarities between duplicated regions. The slightly lower performance in rotation scenarios is 

attributed to boundary distortions that affect the statistical coherence modelled by the copula. Despite this, the 

overall F1-scores remain high, showing the algorithm’s robustness. The low FPR in all categories also reflects 

the reliability of the method in avoiding false detections.  

From a statistical perspective, JPEG compression reduces the fidelity of pixel-level information by discarding 

high-frequency components, which directly affects traditional forgery detection techniques that rely on raw 

pixel similarity or frequency-domain consistency. However, the copula-based method remains effective 

because it focuses not on absolute pixel values, but on the statistical dependence structure between image 

blocks. 

Copula functions model the joint distribution of features extracted from local image patches—typically sub-

band coefficients from steerable pyramid decomposition. Even under compression, duplicated regions within 

the same image often retain a similar copula structure, because their underlying statistical relationships persist. 

By isolating and comparing the dependency patterns (via mutual information), the copula-based method is able 

to detect forgeries even when compression introduces noise, blur, or quantization errors. 
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Figure 4. Performance under different JPEG quality settings 

Figure 6 shows the algorithm’s performance on forged images compressed at different quality factors (QF). 

The method maintains above 90% accuracy when QF ≥ 70%. Performance degrades gradually below QF 60% 

due to loss of statistical structure in compressed images. This confirms that copula-based dependency 

modelling is resilient to moderate compression artifacts. 

This robustness under JPEG degradation highlights a major advantage of the copula framework: its ability to 

abstract away from raw data representation and operate on distributional similarity, enabling it to outperform 

methods that are more sensitive to pixel-level distortions. the algorithm’s performance on forged images 

compressed at different quality factors (QF). The method maintains above 90% accuracy when QF ≥ 70%. 

Performance degrades gradually below QF 60% due to loss of statistical structure in compressed images. This 

confirms that copula-based dependency modelling is resilient to moderate compression artifacts. 

4.3. Comparative Analysis with Classical Methods 

To evaluate the advantage of our method, we compared its average F1-score with three classical approaches: 

SIFT-based matching, SURF-based matching, and DWT-SVD feature detection. As shown in Table 2, our 

method outperforms traditional algorithms, particularly under image scaling and JPEG degradation. 

 

Table 2. F1-Score Comparison with Classical Methods 

 

Method Translation Rotation Scaling 

SIFT 0.78 0.75 0.72 

SURF 0.81 0.76 0.74 

DWT-SVD 0.85 0.80 0.78 

Copula-based 0.93 0.87 0.90 

 

These results demonstrate that the method is highly effective even when geometric transformations are 

applied. The high precision and recall for the translation group show that the algorithm can effectively detect 

duplicated areas when their spatial structure is preserved. For scaling, the copula model captures changes in 

distribution scale, allowing the algorithm to remain sensitive to statistical similarity. In the rotation scenario, 

slight edge distortions reduce dependency coherence, leading to marginally lower recall and precision. 

 

The low False Positive Rate (FPR) across all cases indicates strong specificity — the algorithm rarely 

misclassifies genuine regions. These values were obtained by comparing each detected mask with the ground 

truth binary mask using pixel-level operations, counting correctly and incorrectly predicted forgery regions 

(TP, FP, FN, TN), which were then input into the evaluation formulas explained earlier. 
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While the previous subsections presented quantitative results through performance metrics and comparison 

tables, it is also important to observe how the proposed algorithm behaves in visual practice. Quantitative 

metrics alone may not capture the subtle aspects of detection quality, such as spatial precision and region 

continuity. Therefore, we complement the numerical analysis with a qualitative interpretation to visually 

evaluate how well the copula-based method localizes forged regions in different image scenarios. The visual 

results of forged region detection are presented in Figures 5 and Figures 6 

 

 
Figure 5. Forgery detection performance on tree images under various manipulations 

 

This figure illustrates successful detection in tree images subjected to translation and blurring. The forged 

regions are accurately highlighted, demonstrating that the algorithm is not significantly affected by spatial 

shifting or slight smoothing artifacts. 

 

 
Figure 6. Forgery detection performance on coin images under various transformations 

 

Demonstrates the algorithm’s robustness under rotation. Forged coins that were rotated by small angles (around 

3°–5°) were still successfully identified, achieving approximately 90% precision. This indicates that the copula 

model captures statistical dependencies even with angular distortions. These figures support the quantitative 

findings and further demonstrate the method’s effectiveness in practical forensic scenarios. Visual consistency 

across different types of manipulation highlights the strength of the copula-based approach for real-world 

forgery detection. 

 

The ability of the copula-based method to successfully detect forged regions lies in its use of mutual 

information derived from copula functions, which capture both linear and non-linear dependencies between 

pixel block features. When a region is copied and moved within an image, the duplicated block maintains a 

high statistical dependency with its original source. Copula functions enable the decomposition of this joint 

dependency into marginal distributions and a dependency structure, allowing the algorithm to detect similarity 

even under transformations like rotation, scaling, or compression. This approach makes it possible to identify 

regions with matching statistical characteristics—even if they differ visually—by detecting shifts in joint 
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probability patterns. As a result, the copula-based method can pinpoint manipulations with greater sensitivity 

and reliability than conventional pixel-based or key point-based methods. 

 

5. Conclusion 

This study proposed a novel blind copy-move forgery detection algorithm based on copula-based mutual 

information, which analyses statistical dependencies between image blocks using only the manipulated image. 

By modelling joint distributions through copula functions, the algorithm successfully captures both linear and 

non-linear relationships that are preserved during duplication, even after undergoing geometric transformations 

or post-processing. Experimental evaluations on the CoMoFoD dataset demonstrated that the proposed method 

achieves high precision, recall, and F1-scores across various manipulation types, including translation, scaling 

(±20%), and rotation (±5°). The method also showed strong resilience to JPEG compression, maintaining over 

90% accuracy for quality factors above 70%, and remained effective under blurring, noise, and color reduction. 

Compared to traditional approaches such as SIFT, SURF, and DWT-SVD, the copula-based approach 

consistently outperformed in both accuracy and robustness, particularly in cases involving smooth textures or 

compression artifacts. In addition to quantitative results, qualitative visualizations confirmed that the algorithm 

accurately localized forged regions with minimal false detections, even in complex image scenes. These results 

validate the effectiveness and reliability of the proposed method 
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