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Abstract. In this work, we introduced some new vector valued sequence spaces over 2-

normed spaces using Musielak-Phy function Φ = (𝜑𝑛). We also studied some properties of 

these spaces. 
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Abstrak. Pada penelitian ini, kami memperkenalkan beberapa ruang barisan bernilai vektor 

baru atas ruang bernorma-2 menggunakan fungsi Musielak-Phy 𝛷 = (𝜑𝑛). Kami juga 

mempelajari beberapa sifat dari ruang ini. 
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1. Introduction 

A phy-function, 𝜑, is a non-negative real valued function on ℝ, which is, continuous, even, non-

decreasing function and vanishing at zero. A 𝜑-function is a generalization of Orlicz function. 

Using the idea of Orlicz function, 𝑀, Lindenstrauss and Tzafriri [3] defined the scalar sequence 

space such that 

∑ 𝑀 (
|𝑥𝑘|

𝜌
)

𝑘≥1

< ∞ 

for some 𝜌 > 0. This space, denoted by ℓ𝑀, becomeskapBanachospaceuwhichris called an Orlicz 

sequence space under the following norm 

‖𝑥‖ = inf {𝜌 > 0 ∶ ∑ 𝑀 (
|𝑥𝑘|

𝜌
)

𝑘≥1

≤ 1}. 
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Let 𝐸𝑘 and 𝑌 be Banach spaces. The collection of all bounded linear operators from 𝐸𝑘 to 𝑌 

denoted by 𝐵(𝐸𝑘 , 𝑌) become a Banachespace respected to the followingwnorm 

‖𝐴𝑘‖ = sup{‖𝐴𝑘𝑧‖: 𝑧 ∈ 𝑈(𝐸𝑘)}, 

with 𝐴𝑘 ∈ 𝐵(𝐸𝑘 , 𝑌) and 𝑈(𝐸𝑘) is the closed unit sphere in 𝐸𝑘. By 𝐸𝑘
′ , denotes the collection of 

all continuous dual of 𝐸𝑘. Srivastava and Ghosh [6] introduced a class of vector valued sequences 

using Orlicz-function 𝑀, i. e. ℓ𝑀(𝐵(𝐸𝑘 , 𝑌)) and ℓ𝑀(𝐸𝑘
′ ). They studied Kothe-Toeplitz dual, 

continuous dual, operator representation and weak convergence for these spaces. 

A phy-function, 𝜑, is said to satisfy convex property, if for every 𝛼, 𝛽 ∈ [0,1] with 𝛼 + 𝛽 = 1 

and every 𝑥, 𝑦 ∈ 𝑋 implies 

𝜑(𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝜑(𝑥) + 𝛽𝜑(𝑦). 

The concept of 2-normed spaces was introduced by Gahler [1] in the mid 1960s and many others 

such as Gunawan and Mashadi [2] have studied and obtained various results. 

Let 𝑋 be a linear space over the field 𝐾. The function ‖ ⋅ , ⋅‖: 𝑋 × 𝑋 → ℝ is to be a 2-norm on 𝑋 

if it is satisfying the following properties 

(1) ‖𝑥1, 𝑥2‖ = 0 if and onlyJif 𝑥1 and 𝑥2 are linearlyudependent. 

(2) ‖𝑥1, 𝑥2‖ = ‖𝑥2, 𝑥1‖ 

(3) ‖𝛼𝑥1, 𝑥2‖ = |𝛼|‖𝑥1, 𝑥2‖, 𝛼 ∈ ℝ 

(4) ‖𝑥1, 𝑥2 + 𝑥3‖ ≤ ‖𝑥1, 𝑖𝑥2‖ + ‖𝑥1, 𝑥3‖ for all 𝑥1, 𝑥2, 𝑥3 ∈ 𝑋 

and the pair (𝑋, ‖ ⋅ , ⋅‖), written as 𝑋‖ ⋅ ,⋅‖, is called a 2-normedIspace. For example, we may take 

𝑋 = ℝ2 equipped with the 2-norm defined as  

‖𝑥1, 𝑥2‖𝐸 = |det (
𝑥11 𝑥12

𝑥21 𝑥22
)|. 

This is the same meaning with the area of the parallelogramuspanned by the vectors 𝑥1 and 𝑥2. 

Then,k𝑋‖ ⋅ ,⋅‖ is a 2-normeduspace. 

The sequence (𝑥𝑘) in a 2-normedlspace 𝑋‖ ⋅ ,⋅‖ isesaid to be converges to 𝐿 if 

lim
𝑘→∞

‖𝑥𝑘 − 𝐿, 𝑦‖ = 0 

holds if for every 𝑦 ∈ 𝑋‖ ⋅ ,⋅‖. Furthermore, the sequence (𝑥𝑘) in the arbitrary 2-normed space 

𝑋‖ ⋅ ,⋅‖ is called Cauchy sequence if  

lim
𝑘,𝑝→∞

‖𝑥𝑘 − 𝑥𝑝, 𝑦‖ = 0 

holds for every 𝑦 ∈ 𝑋‖ ⋅ ,⋅‖. Furthermore, if every Cauchylsequence in the space 𝑋‖ ⋅ ,⋅‖ converges 

to some 𝐿 ∈ 𝑋‖ ⋅ ,⋅‖, then 𝑋‖ ⋅ ,⋅‖ is said to beicomplete respected to the 2-norm. AnyYcomplete 𝑛-

normedyspace is said to be 2-Banachpspace. 
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Let Φ = (𝜑𝑘) be a Musielak-Phy function and let 𝑋‖ ⋅ ,⋅‖ be a 2-normed space. Let Ω(𝑋‖ ⋅ ,⋅‖) be 

the space of all 𝑋‖ ⋅ ,⋅‖-valued sequences 𝑥 = (𝑥𝑘) where 𝑥𝑘 ∈ 𝑋‖ ⋅ ,⋅‖. Any sublinear space in 

Ω(𝑋‖ ⋅ ,⋅‖) is called 𝑋‖ ⋅ ,⋅‖-valued sequence space. In the present paper, we define the following 

spaces for every 𝑦 ∈ 𝑋‖ ⋅ ,⋅‖: 

ℓ1
∃(𝑋‖ ⋅ ,⋅‖, Φ) = {𝑥 = (𝑥𝑘) ∈ Ω(𝑋‖ ⋅ ,⋅‖) ∶ (∃𝜌 > 0) ∑ 𝜑𝑘 (‖

𝑥𝑘

𝜌
, 𝑦‖)

𝑘≥1

< ∞} (1), 

ℓ∞
∃ (𝑋‖ ⋅ ,⋅‖, Φ) = {𝑥 = (𝑥𝑘) ∈ Ω(𝑋‖ ⋅ ,⋅‖) ∶ (∃𝜌 > 0) sup

𝑘
𝜑𝑘 (‖

𝑥𝑘

𝜌
, 𝑦‖) < ∞} (2), 

𝑐0
∃(𝑋‖ ⋅ ,⋅‖, Φ) = {𝑥 = (𝑥𝑘) ∈ Ω(𝑋‖ ⋅ ,⋅‖) ∶ (∃𝜌 > 0) lim

𝑘→∞
𝜑𝑘 (‖

𝑥𝑘

𝜌
, 𝑦‖) = 0} (3). 

Throughout this paper, we introduce and study vector valued sequencegspaces generated by a 

Musielak-Phy function over 2-normedJspaces. 

2. Results and Discussion 

Theorem 1. Let Φ = (𝜑𝑘) be a Musielak-Phy function that satisfy convex property, then the 

space ℓ1
∃(𝑋‖ ⋅ ,⋅‖, Φ), ℓ∞

∃ (𝑋‖ ⋅ ,⋅‖, Φ) and 𝑐0
∃(𝑋‖ ⋅ ,⋅‖, Φ) are linearcspaces over the fieldrof complex 

numbers ℂ. 

Proof. Let 𝑥 = (𝑥𝑘) ∈ ℓ1
∃(𝑋‖ ⋅ ,⋅‖, Φ) and 𝛼 ∈ ℂ. We will show that 𝛼𝑥 ∈ ℓ1

∃(𝑋‖ ⋅ ,⋅‖, Φ). It is 

clearly for 𝛼 = 0. Assume that 𝛼 ≠ 0. Since 𝑥 = (𝑥𝑘) ∈ ℓ1
∃(𝑋‖ ⋅ ,⋅‖, Φ), then there exists 𝜌 > 0 

such that 

∑ 𝜑𝑘 (‖
𝑥𝑘

𝜌
, 𝑦‖)

𝑘≥1

< ∞. 

Define 𝛾 = 2𝜌|𝛼|, then 
|𝛼|

𝛾
=

1

2𝜌
. Thus 

∑ 𝜑𝑘 (‖
𝛼𝑥𝑘

𝛾
, 𝑦‖)

𝑘≥1

= ∑ 𝜑𝑘 (
|𝛼| 

𝛾
‖𝑥𝑘 , 𝑦‖)

𝑘≥1

= ∑ 𝜑𝑘 (
1

2𝜌
‖𝑥𝑘 , 𝑦‖)

𝑘≥1

 

≤
1

2
∑ 𝜑𝑘 (‖

𝑥𝑘

𝜌
, 𝑦‖)

𝑘≥1

< ∞. 

Since 𝛾 = 2𝜌|𝛼| > 0, then 𝛼𝑥 ∈ ℓ1
∃(𝑋‖ ⋅ ,⋅‖, Φ). 

Let 𝛼, 𝛽 ∈ ℂ and 𝑥 = (𝑥𝑘), 𝑧 = (𝑧𝑘) in ℓ1
∃(𝑋‖ ⋅ ,⋅‖, Φ). We will show that  

𝛼𝑥 + 𝛽𝑦 ∈ ℓ1
∃(𝑋‖ ⋅ ,⋅‖, Φ). It is clear if 𝛼 = 𝛽 = 0. Assume that 𝛼 ≠ 0 or 𝛽 ≠ 0. Since 𝑥 =

(𝑥𝑘), 𝑧 = (𝑧𝑘) ∈ ℓ1
∃(𝑋‖ ⋅ ,⋅‖, Φ), then there exists 𝜌1, 𝜌2 > 0 such that 

∑ 𝜑𝑘 (‖
𝑥𝑘

𝜌1
, 𝑦‖)

𝑘≥1

< ∞ 
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and 

∑ 𝜑𝑘 (‖
𝑧𝑘

𝜌2
, 𝑦‖)

𝑘≥1

< ∞. 

We choose 𝜌 = sup{𝜌1, 𝜌2}. Then 

∑ 𝜑𝑘 (‖
𝛼𝑥𝑘 + 𝛽𝑧𝑘

𝜌
, 𝑦‖)

𝑘≥1

≤ ∑ 𝜑𝑘 (
|𝛼|

|𝛼| + |𝛽|
‖

𝑥𝑘

𝜌
, 𝑦‖ +

|𝛽|

|𝛼| + |𝛽|
‖

𝑧𝑘

𝜌
, 𝑦‖)

𝑘≥1

 

≤
|𝛼|

|𝛼| + |𝛽|
∑ 𝜑𝑘 (‖

𝑥𝑘

𝜌
, 𝑦‖)

𝑘≥1

+
|𝛽|

|𝛼| + |𝛽|
∑ 𝜑𝑘 (‖

𝑧𝑘

𝜌
, 𝑦‖)

𝑘≥1

< ∞. 

It means 𝛼𝑥 + 𝛽𝑦 ∈ ℓ1
∃(𝑋‖ ⋅ ,⋅‖, Φ). Hence, ℓ1

∃(𝑋‖ ⋅ ,⋅‖, Φ) is a linearpspace. With the similar way, 

we can prove thatrℓ∞
∃ (𝑋‖ ⋅ ,⋅‖, Φ) and 𝑐0

∃(𝑋‖ ⋅ ,⋅‖, Φ) is a linearospace. ∎ 

Theorem 2. Let Φ = (𝜑𝑘) be Musielak-Phy function that satisfy convex property. If 𝑥 = (𝑥𝑘) ∈

ℓ1
∃(𝑋‖ ⋅ ,⋅‖, Φ) and 𝑦 ∈ 𝑋, then ℓ1

∃(𝑋‖ ⋅ ,⋅‖, Φ) become aytopological linear spaces that normed 

defined by 

‖𝑥‖ = inf {𝜌 > 0 ∶ ∑ 𝜑𝑘 (‖
𝑥𝑘

𝜌
, 𝑦‖)

𝑘≥1

≤ 1}. 

Proof. Firstly, we will show that ‖𝑥‖ = 0 if andoonly if 𝑥 = 0. Let 𝑥 = 0. Then 𝑥𝑘 = 0 for every 

natural numbers 𝑘. Thus, for every 𝑦 ∈ 𝑋‖ ⋅ ,⋅‖ and for every 𝜀 > 0, we get 

‖
𝑥𝑘

𝜀
, 𝑦‖ = ‖0, 𝑦‖ = 0. 

Since Musielak-phy function, Φ, is vanishing at zero, we have for every 𝑘 ∈ ℕ, 

𝜑𝑘 (‖
𝑥𝑘

𝜀
, 𝑦‖) = 𝜑𝑘(0) = 0. 

Therefore 

∑ 𝜑𝑘 (‖
𝑥𝑘

𝜀
, 𝑦‖)

𝑘≥1

< 1. 

It means ‖𝑥‖ < 𝜀 for every 𝜀 > 0. Thus ‖𝑥‖ = 0.  

Let ‖𝑥‖ = 0 for every 𝑥 ∈ ℓ1
∃(𝑋‖ ⋅ ,⋅‖, Φ). We will show that 𝑥 = 0. 

Suppose 𝑥𝑘 ≠ 0 for every 𝑘 ∈ ℕ. Then ‖𝑥𝑘 , 𝑦‖ ≠ 0 for every 𝑘 ∈ ℕ and every 𝑦 ∈ 𝑋‖ ⋅ ,⋅‖. Since 

1 𝑛⁄ ⟶ 0 as 𝑛 ⟶ ∞, then ‖𝑛𝑥𝑘 , 𝑦‖ = 𝑛‖𝑥𝑘, 𝑦‖ ⟶ ∞. Since Φ is Musielak-Phy function, then 

for every 𝑘 ∈ ℕ, 
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∑ 𝜑𝑘 (‖
𝑥𝑘

1 𝑛⁄
, 𝑦‖)

𝑘≥1

⟶ ∞. 

This is contrary to the fact that ‖𝑥‖ = 0. It should be 𝑥𝑘 = 0 for every 𝑘 ∈ ℕ or 𝑥 = 0. 

Secondly, we will show that ‖𝛼𝑥‖ = |𝛼|‖𝑥‖ for every complex numbers 𝛼 and 𝑥 = (𝑥𝑘) ∈

ℓ1
∃(𝑋‖ ⋅ ,⋅‖, Φ). Since 

‖𝛼𝑥‖ = inf {𝜌 > 0 ∶ ∑ 𝜑𝑘 (‖
𝛼𝑥𝑘

𝜌
, 𝑦‖)

𝑘≥1

≤ 1} = inf {𝜌 > 0 ∶ ∑ 𝜑𝑘 (|𝛼| ‖
𝑥𝑘

𝜌
, 𝑦‖)

𝑘≥1

≤ 1} 

then, this is clear for 𝛼 = 0. Assume that 𝛼 ≠ 0. If ‖𝑥‖ < 𝜀 for every 𝜀 > 0, then 

∑ 𝜑𝑘 (‖
𝑥𝑘

𝜀
, 𝑦‖)

𝑘≥1

= ∑ 𝜑𝑘 (‖
𝛼𝑥𝑘

𝜀|𝛼|
, 𝑦‖)

𝑘≥1

≤ 1. 

Thus, ‖𝛼𝑥‖ ≤ |𝛼|𝜀. Therefore ‖𝛼𝑥‖ ≤ |𝛼|‖𝑥‖.  

Since 

‖𝑥‖ = ‖
𝛼𝑥

|𝛼|
‖ ≤

1

|𝛼|
‖𝛼𝑥‖ 

for every 𝛼 ≠ 0, implies |𝛼|‖𝑥‖ ≤ ‖𝛼𝑥‖. We get, ‖𝛼𝑥‖ = |𝛼|‖𝑥‖. 

Finally, take any vector 𝑥, 𝑧 ∈ ℓ1
∃(𝑋‖ ⋅ ,⋅‖, Φ) and 𝛼, 𝛽 ∈ (0,1] such that 𝛼 + 𝛽 = 1, ‖𝑥‖ < 𝛼 and 

‖𝑧‖ < 𝛽. Thus, for every 𝑘 ∈ ℕ, we get 

𝜑𝑘 (‖
𝑥𝑘 + 𝑧𝑘

𝛼 + 𝛽
, 𝑦‖) = 𝜑𝑘 (‖

𝛼

𝛼 + 𝛽

𝑥𝑘

𝛼
+

𝛽

𝛼 + 𝛽

𝑧𝑘

𝛽
, 𝑦‖). 

Since 𝜑𝑘 is a phy-function and it have a convex property implies 

∑ 𝜑𝑘 (‖
𝑥𝑘 + 𝑧𝑘

𝛼 + 𝛽
, 𝑦‖)

𝑘≥1

≤
𝛼

𝛼 + 𝛽
∑ 𝜑𝑘 (‖

𝑥𝑘

𝛼
, 𝑦‖)

𝑘≥1

+
𝛽

𝛼 + 𝛽
∑ 𝜑𝑘 (‖

𝑧𝑘

𝛽
, 𝑦‖)

𝑘≥1

 

≤
𝛼

𝛼 + 𝛽
+

𝛽

𝛼 + 𝛽
= 1. 

Consequently ‖𝑥 + 𝑧‖ ≤ 𝛼 + 𝛽. Thus ‖𝑥 + 𝑧‖ ≤ ‖𝑥‖ + ‖𝑧‖. ∎ 

3. Conclusion 

Based on the result section, ℓ1
∃(𝑋‖ ⋅ ,⋅‖, Φ), ℓ∞

∃ (𝑋‖ ⋅ ,⋅‖, Φ) and 𝑐0
∃(𝑋‖ ⋅ ,⋅‖, Φ) are vector valued 

sequence spaces over 2-normed space with Musielak-phy function Φ = (𝜑𝑘) satisfying convex 

property. Furthermore, for specified norm, ℓ1
∃(𝑋‖ ⋅ ,⋅‖, Φ) be aytopological linear spaces. 
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