

Journal of Research in Mathematics Trends and Technology

Vertex Exponent of Asymmetric Two-coloured Cycle

A. Syahmarani^{1^*} and S. Suwilo¹

¹Department of Mathematics, Universitas Sumatera Utara, Medan, 20155, Indonesia

Abstract. This paper is about an asymmetric two-coloured cycle. Let *D* be an asymmetric two-coloured cycle on *n* vertices, where *n* is odd and $n \ge 3$, we show that the exponent of the *k*th vertex of *D* is exactly $(n^2 - 1)/4 + \lfloor k/2 \rfloor$.

Keywords: Exponent Digraphs, Primitive, Two-coloured Digraphs, Vertex Exponent.

Abstrak. Paper ini membahas tentang cycle dwi-warna asimetrik. Misalkan D merupakan suatu cycle dwi-warna asimetrik dengan n vertex, dimana n ganjil dan $n \ge 3$, diperlihatkan bahwa eksponen vertex ke k dari D adalah tepat $(n^2 - 1)/4 + \lfloor k/2 \rfloor$.

Kata Kunci: Eksponen Digraph, Primitif, Digraph Dwi-warna, Eksponen Vertex.

Received 20 July 2020 | Revised 13 August 2020 | Accepted 8 September 2020

1 Digraphs and Two-coloured Digraphs

We discuss about vertex exponent of primitive asymmetric two-coloured digraphs with a special type. The notations and terminologies for digraphs and two-coloured digraphs in this paper is based on [1]. A *walk* of length m from vertex u to vertex v in a graph is a sequence of m of the form

$$(v_0, v_1), (v_1, v_2), \dots, (v_{m-1}, v_m)$$

where $v_0 = u$ and $v_m = v$. We state a walk *w* from *u* to *v* as a (u, v)-walk or w_{uv} and $\ell(w_{uv})$ is denoted by its length. A (u, v)-walk is *closed* provided u = v and if not is *open*. A *path* from *u* to *v* is a walk with no repeated vertices except possibly u = v. A *cycle* is a closed path. A *loop* is a closed cycle of length 1.

A digraph *D* called *strongly connected* if for each pair of vertices *u* and *v* there is a (u, v)-walk and also a (v, u)-walk of length exactly *k* in *D*. The *exponent* of *D*, denoted by exp(D), is the smallest of such positive integer *k*. A strongly connected digraph *D* is primitive if and only if the greatest common divisor of lengths of all cycle in *D* is 1 [1]. A *symmetric* digraph *D* is a digraph such that the arc (u, v) is in *D* whenever the arc (v, u) is in *D*. Since a symmetric digraph must have a cycle of length 2, a symmetric digraph is primitive if and only if it contains a cycle with odd length.

^{*}Corresponding author at: Department of Mathematics, Universitas Sumatera Utara, Medan, 20155, Indonesia

E-mail address: aghni.syahmarani@usu.ac.id

Copyright © 2020 Published by Talenta Publisher, e-ISSN: 2656-1514, DOI: 10.32734/jormtt.v2i2.4679 Journal Homepage: http://talenta.usu.ac.id/jormtt

A *two-coloured digraph* or a 2-*digraph*, is a digraph in which each of its arcs is coloured by either red or blue (2 colours). In a two-coloured digraph we differentiate a walk by how many red and how many blue arcs it contains. We intend an $(h,k)^T$ -walk from u to v as a (u,v)-walk that consists of h red arcs and k blue arcs and the length is h+k. The vector $(r(w),b(w))^T$ is called the composition of the walk w. A two-coloured digraph D is *strongly connected* provided that its underlying digraph is strongly connected. Underlying digraph means the digraph obtained from D by ignoring its arc colour. An *asymmetric two-coloured digraph* is a symmetric two-coloured digraph for which an arc (u,v) is coloured by red whenever the arc (v,u) is coloured by blue and vice versa. A strongly connected two-coloured digraph is primitive provided there are nonnegative integers h and k such that for each pair of vertices u and v there is an $(h,k)^T$ -walk from u to v. The smallest nonnegative integer h+k among all such nonnegative integers h and k is called the 2-*exponent* of D, denoted by $\exp_2(D)$.

Let a two-coloured digraph *D* and $\{\delta = \delta_1, \delta_2, \dots, \delta_t\}$ as its set of all cycle. A *cycle matrix M* of *D* is a 2 by *t* matrix whose *i*th column is the composition of the cycle δ_i , $i = 1, 2, \dots, t$. That is

$$M = \left[\begin{array}{ccc} r(\delta_1) & r(\delta_2) & \dots & r(\delta_t) \\ b(\delta_1) & b(\delta_2) & \dots & b(\delta_t) \end{array} \right].$$

The content of *M* is defined to be 0 if the rank(M) = 1 and the greatest common divisor of the 2 by 2 minors of *M*, otherwise.

Shader and Suwilo [1] initiated the research on 2-exponents of two-coloured digraphs. They indicated that the largest 2-exponent of primitive two-coloured digraphs on *n* vertices lies on the interval $[(n^3 - 5n^2)/3, (3n^3 + 2n^2 - 2n)/2]$. Since that time, many papers have been published on the subject. Suwilo [2] has shown the exponent of an asymmetric primitive two-coloured (n,s)-lollipop. Let *D* be an asymmetric primitive two-coloured (n,s)-lollipop. Since *D* has a red path of length (s+1)/2 + (n-s), then $\exp_2(D) = (s^2 - 1)/2 + (s+1)(n-s)$. Suwilo has also shown that if *n* is odd and s = n or s = n - 2, then $\exp_2(D) = (n^2 - 1)/2$ and if *n* is even and s = n - 1, then $\exp_2(D) = n^2/2$. Gao and Shao [3] have shown the generalized exponent of primitive two-coloured Wielandt digraph $W_n^{(2)}$. They showed 3 types of Wielandt digraph and found the formula to find vertex exponent for each type. Fomichev and Avezova [4] found the exact formula for the exponents of the mixing digraphs of register transformations.

Suwilo [5] also found the vertex exponent of two-colored primitive extremal ministrong digraphs $D^{(2)}$ on n vertices. If $D^{(2)}$ has one blue arc, he showed that the exponents of vertices of $D^{(2)}$ lie on $[n^2 - 5n + 8, n^2 - 3n + 1]$. Since $D^{(2)}$ has two blue arcs, he also showed that the exponents of vertices in $D^{(2)}$ lie on $[n^2 - 4n + 4, n^2 - n]$. Vertex exponents of a class of two-colored of the Hamiltonian digraphs have been shown in [6]. They found that the vertex exponents of primitive two-colored digraph $L_n^{(2)}$ on $n \ge 5$ vertices whose underlying digraph is the Hamiltonian digraph consisting of the cycle $v_1 \rightarrow v_n \rightarrow v_{n-1} \rightarrow \cdots \rightarrow v_2 \rightarrow v_1$ and the arc $v_1 \rightarrow v_{n-2}$ is known that $2n^2 - 6n + 2 \ge \exp(L_n^{(2)}) \ge (n^3 - 2n^2 + 1)/2$. If the $\exp(L_n^{(2)}) = (n^3 - 2n^2 + 1)/2$, then its vertex exponents lie on $[(n^3 - 2n^2 - 3n + 4)/4, (n^3 - 2n^2 + 3n + 6)/4]$ and if $\exp(L_n^{(2)}) = 2n^2 - 6n + 2$, then its vertex exponents lie on $[n^2 - 4n + 5, n^2 - 2n - 1]$.

The aim of this paper is to show the vertex exponent of an asymmetric primitive two-coloured cycle. We give the formula to find the vertex exponent of an asymmetric primitive two-coloured

cycle as the result.

2 Vertex Exponent of An Asymmetric Two-coloured Cycle

Let *D* be an asymmetric primitive two-coloured cylce of length *n*. If *D* is primitive, then *n* have to be odd and $n \ge 3$. Furthermore, if *D* is asymmetric, then *D* has directed cycles of length 2 with composition $(1,1)^T$, and also has two directed cycles δ_1 and δ_2 of length *n*. The cycle are

$$(1,2), (2,4), \ldots, (n-1,n), (n,n-2), \ldots, (5,3), (3,1)$$

and

$$(1,3), (3,5), \dots, (n,n-1), (n-1,n-3), \dots, (4,2), (2,1)$$

Hence, the compositions form of the directed cycles of *D* are $(1,1)^T$, $(n-a,a)^T$, and $(a,n-a)^T$ for some nonnegative integer $0 \le a \le n$. This implies the cycle matrix of *D* is of the form

Since D is primitive, by [1] the content of M is 1. Therefore

$$1 = gcd(n(n-2a), n-2a, 2a-n) = \pm (n-2a).$$

This implies that a = (n+1)/2 or a = (n-1)/2, so without loss the generality we may assume that

$$M = \left[\begin{array}{rrrr} (n+1)/2 & (n-1)/2 & 1 & 1 & \dots & 1 \\ (n-1)/2 & (n+1)/2 & 1 & 1 & \dots & 1 \end{array} \right].$$

We note that since *D* is asymmetric, every vertex of *D* lies on a $(1,1)^T$ -walk. This means each $(r,b)^T$ -walk in *D* can be extended to a $(r+t,b+t)^T$ -walk for each positive integer $t \ge 1$.

Let *D* be an asymmetric primitive two-coloured cycle where the arcs colouring in succession are (n+1)/2 red arcs and (n-1)/2 blue arcs or vice versa. Since *n* is odd, there are two cases. For n = 4m + 1, colour γ_1 by giving red on (v_j, v_{j-2}) -arcs where $3 \le j \le (n+1)/2$, (v_1, v_2) -arc, and (v_i, v_{i+2}) -arcs where $2 \le i \le (n-1)/2$ and the others with blue. For n = 4m + 3, colour γ_1 by giving red on (v_j, v_{j-2}) -arcs where $3 \le j \le (n+3)/2$, (v_1, v_2) -arc, and (v_i, v_{i+2}) -arcs where $3 \le j \le (n+3)/2$, (v_1, v_2) -arc, and (v_i, v_{i+2}) -arcs where $2 \le i \le (n+1)/2$ and the others with blue.

Lemma 2.1. Suppose *D* be an asymmetric primitive two-coloured cycle of length *n*, then the exponent v_k of $D \exp_D(v_k) \ge \frac{1}{4}(n^2 - 1) + \lfloor \frac{k}{2} \rfloor$.

Proof. Suppose *D* be an asymmetric primitive two-coloured cylce of length *n*. Since *D* is primitive, then *n* have to be odd and $n \ge 3$. Moreover, since *D* is asymmetric, for each v_k on *D* there is a $(1,1)^T$ -closed walk from v_k to itself of length 2. Let $p_{k,x}$ be a path which connect v_k to v_x on *D* is a $(r_{p_{k,x}}, b_{p_{k,x}})^T$ -path consist $r_{p_{k,x}}$ red arcs and $b_{p_{k,x}}$ blue arcs. For each v_k on *D*, then $(r,b)^T$ -walk from v_k to v_x is of the form

$$\begin{bmatrix} r \\ b \end{bmatrix} = \begin{bmatrix} r_{p_{k,x}} \\ b_{p_{k,x}} \end{bmatrix} + x_1 \begin{bmatrix} \frac{n+1}{2} \\ \frac{n-1}{2} \end{bmatrix} + x_2 \begin{bmatrix} \frac{n-1}{2} \\ \frac{n+1}{2} \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

for some nonnegative integers x_1 , x_2 and x_3 .

Case 1. For n = 4m + 1, we show that $\exp_D(v_k) \ge \frac{1}{4}(n^2 - 1) + \lfloor \frac{k}{2} \rfloor$. If k is even, for each v_x on D, there is a $(r,b)^T$ -walk from v_k to v_x . We take a $(r,b)^T$ -walk from v_k to $v_{\frac{n-1}{2}}$ and to $v_{\frac{n+1}{2}}$, then we find $\exp_D(v_k) \ge \frac{1}{4}(n^2 - 1) + \frac{k}{2}$.

There are red path of length *e* and blue path of length *f* from v_k to $v_{\frac{n-1}{2}}$, then the $(r, b)^T$ -walk is of the form

$$\begin{bmatrix} r \\ b \end{bmatrix} = \begin{bmatrix} e \\ f \end{bmatrix} + x_1 \begin{bmatrix} \frac{n+1}{2} \\ \frac{n-1}{2} \end{bmatrix} + x_2 \begin{bmatrix} \frac{n-1}{2} \\ \frac{n+1}{2} \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

for some nonnegative integers e, f, x_1, x_2 and x_3 .

There are also red path of length g and blue path of length h from v_k to $v_{\frac{n+1}{2}}$, then the $(r, b)^T$ -walk is of the form

$$\begin{bmatrix} r \\ b \end{bmatrix} = \begin{bmatrix} g \\ h \end{bmatrix} + y_1 \begin{bmatrix} \frac{n+1}{2} \\ \frac{n-1}{2} \end{bmatrix} + y_2 \begin{bmatrix} \frac{n-1}{2} \\ \frac{n+1}{2} \end{bmatrix} + y_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

for some nonnegative integers g, h, y_1 , y_2 and y_3 . We note that if $1 \le k < \frac{n+1}{2}$, then $e = \frac{n-1}{4} - \frac{k}{2}$, f = 0, g = 0 and $h = \frac{n-1}{4} + \frac{k}{2}$. But if $\frac{n+1}{2} \le k \le n$, then $e = g = \frac{k}{2} - \frac{n-1}{4}$, f = 0, and $h = \frac{n-1}{2}$. By setting both of those equations we have

$$\begin{bmatrix} e-g\\f-h \end{bmatrix} = (y_1 - x_1) \begin{bmatrix} \frac{n+1}{2}\\\frac{n-1}{2} \end{bmatrix} + (y_2 - x_2) \begin{bmatrix} \frac{n-1}{2}\\\frac{n+1}{2} \end{bmatrix} + (y_3 - x_3) \begin{bmatrix} 1\\1 \end{bmatrix}$$
(2.1)

Subtraction the second by the first component of Equation 2.1, then we have $(y_1 - x_1) + (x_2 - y_2) = 2(\frac{n-1}{4})$. This implies $y_1 + x_2 \ge 2(\frac{n-1}{4})$ and hence $y_1 \ge \frac{n-1}{4}$ or $x_2 \ge \frac{n-1}{4}$. Hence we now have that $\exp_D(v_k) \ge \frac{1}{4}(n^2 - 1) + \frac{k}{2}$.

If k is odd, for each v_x on D, there is a $(r,b)^T$ -walk from v_k to v_x . We take a $(r,b)^T$ -walk from v_k to $v_{\frac{n-1}{2}}$ and to $v_{\frac{n+1}{2}}$, then we find $\exp_D(v_k) \ge \frac{1}{4}(n^2-1) + \frac{k-1}{2}$.

There are red path of length *e* and blue path of length *f* from v_k to $v_{\frac{n-1}{2}}$, then the $(r, b)^T$ -walk is of the form

$$\begin{bmatrix} r \\ b \end{bmatrix} = \begin{bmatrix} e \\ f \end{bmatrix} + x_1 \begin{bmatrix} \frac{n+1}{2} \\ \frac{n-1}{2} \end{bmatrix} + x_2 \begin{bmatrix} \frac{n-1}{2} \\ \frac{n+1}{2} \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

for some nonnegative integers e, f, x_1, x_2 and x_3 .

There are also red path of length g and blue path of length h from v_k to $v_{\frac{n+1}{2}}$, then the $(r, b)^T$ -walk is of the form

$$\begin{bmatrix} r \\ b \end{bmatrix} = \begin{bmatrix} g \\ h \end{bmatrix} + y_1 \begin{bmatrix} \frac{n+1}{2} \\ \frac{n-1}{2} \end{bmatrix} + y_2 \begin{bmatrix} \frac{n-1}{2} \\ \frac{n+1}{2} \end{bmatrix} + y_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

for some nonnegative integers g, h, y₁, y₂ and y₃. We note that if $1 \le k \le \frac{n+1}{2}$, then $e = \frac{n-1}{4} + \frac{k-1}{2}$, f = 0, g = 0 and $h = \frac{n-1}{4} - \frac{k-1}{2}$. But if $\frac{n+1}{2} < k \le n$, then $e = \frac{n-1}{2}$ $f = \frac{k-1}{2} - \frac{n-1}{4}$, g = 0, and $h = \frac{k-1}{2} - \frac{n-1}{4}$. By setting both of those equations we have

$$\begin{bmatrix} e-g\\f-h \end{bmatrix} = (y_1 - x_1) \begin{bmatrix} \frac{n+1}{2}\\\frac{n-1}{2} \end{bmatrix} + (y_2 - x_2) \begin{bmatrix} \frac{n-1}{2}\\\frac{n+1}{2} \end{bmatrix} + (y_3 - x_3) \begin{bmatrix} 1\\1 \end{bmatrix}$$
(2.2)

Subtraction the second by the first component of Equation 2.2, then we have $(y_1 - x_1) + (x_2 - y_2) = 2(\frac{n-1}{4})$. This implies $y_1 + x_2 \ge 2(\frac{n-1}{4})$ and hence $y_1 \ge \frac{n-1}{4}$ or $x_2 \ge \frac{n-1}{4}$. Hence we now have that $\exp_D(v_k) \ge \frac{1}{4}(n^2 - 1) + \frac{k-1}{2}$. Then for each k where $1 \le k \le n$ we have $\exp_D(v_k) \ge \frac{1}{4}(n^2 - 1) + \lfloor \frac{k}{2} \rfloor$.

Case 2. For n = 4m + 3, we also show that $\exp_D(v_k) \ge \frac{1}{4}(n^2 - 1) + \lfloor \frac{k}{2} \rfloor$. If k is even, for each v_x on D, there is a $(r,b)^T$ -walk from v_k to v_x . We take a $(r,b)^T$ -walk from v_k to $v_{\frac{n+1}{2}}$ and to $v_{\frac{n+3}{2}}$, then we find $\exp_D(v_k) \ge \frac{1}{4}(n^2 - 1) + \frac{k}{2}$.

There are red path of length *e* and blue path of length *f* from v_k to $v_{\frac{n+1}{2}}$, then the $(r, b)^T$ -walk is of the form

$$\begin{bmatrix} r \\ b \end{bmatrix} = \begin{bmatrix} e \\ f \end{bmatrix} + x_1 \begin{bmatrix} \frac{n+1}{2} \\ \frac{n-1}{2} \end{bmatrix} + x_2 \begin{bmatrix} \frac{n-1}{2} \\ \frac{n+1}{2} \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

for some nonnegative integers e, f, x_1, x_2 and x_3 .

There are also red path of length g and blue path of length h from v_k to $v_{\frac{n+3}{2}}$, then the $(r, b)^T$ -walk is of the form

$$\begin{bmatrix} r \\ b \end{bmatrix} = \begin{bmatrix} g \\ h \end{bmatrix} + y_1 \begin{bmatrix} \frac{n+1}{2} \\ \frac{n-1}{2} \end{bmatrix} + y_2 \begin{bmatrix} \frac{n-1}{2} \\ \frac{n+1}{2} \end{bmatrix} + y_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

for some nonnegative integers g, h, y_1 , y_2 and y_3 . We note that if $1 \le k \le \frac{n+1}{2}$, then $e = \frac{n-1}{2}$, $f = \frac{n+1}{4} + \frac{k}{2}$, $g = \frac{n+1}{4} - \frac{k}{2}$ and $h = \frac{n-1}{2}$. But if $\frac{n+1}{2} < k \le n$, then $e = \frac{k}{2} - \frac{n-1}{4}$, f = 0, g = 0 and $h = \frac{3n-1}{4} - \frac{k}{2}$. By setting both of those equations we have

$$\begin{bmatrix} e-g\\f-h \end{bmatrix} = (y_1 - x_1) \begin{bmatrix} \frac{n+1}{2}\\\frac{n-1}{2} \end{bmatrix} + (y_2 - x_2) \begin{bmatrix} \frac{n-1}{2}\\\frac{n+1}{2} \end{bmatrix} + (y_3 - x_3) \begin{bmatrix} 1\\1 \end{bmatrix}$$
(2.3)

Subtraction the second by the first component of Equation 2.3, then we have $(y_1 - x_1) + (x_2 - y_2) = 2(\frac{n-3}{4})$. This implies $y_1 + x_2 \ge 2(\frac{n-3}{4})$ and hence $y_1 \ge \frac{n-3}{4}$ or $x_2 \ge \frac{n-3}{4}$. Hence we now have that $\exp_D(v_k) \ge \frac{1}{4}(n^2 - 1) + \frac{k}{2}$.

If k is odd, for each v_x on D, there is a $(r,b)^T$ -walk from v_k to v_x . We take a $(r,b)^T$ -walk from v_k to $v_{\frac{n+1}{2}}$ and to $v_{\frac{n+3}{2}}$, then we find $\exp_D(v_k) \ge \frac{1}{4}(n^2-1) + \frac{k-1}{2}$.

There are red path of length *e* and blue path of length *f* from v_k to $v_{\frac{n+1}{2}}$, then the $(r, b)^T$ -walk is of the form

$$\begin{bmatrix} r \\ b \end{bmatrix} = \begin{bmatrix} e \\ f \end{bmatrix} + x_1 \begin{bmatrix} \frac{n+1}{2} \\ \frac{n-1}{2} \end{bmatrix} + x_2 \begin{bmatrix} \frac{n-1}{2} \\ \frac{n+1}{2} \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

for some nonnegative integers e, f, x_1, x_2 and x_3 .

There are also red path of length g and blue path of length h from v_k to $v_{\frac{n+3}{2}}$, then the $(r, b)^T$ -walk is of the form

$$\begin{bmatrix} r \\ b \end{bmatrix} = \begin{bmatrix} g \\ h \end{bmatrix} + y_1 \begin{bmatrix} \frac{n+1}{2} \\ \frac{n-1}{2} \end{bmatrix} + y_2 \begin{bmatrix} \frac{n-1}{2} \\ \frac{n+1}{2} \end{bmatrix} + y_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

for some nonnegative integers g, h, y₁, y₂ and y₃. We note that if $1 \le k \le \frac{n+1}{2}$, then $e = \frac{3n-1}{4} + \frac{k-1}{2}$, f = 0, g = 0 and $h = \frac{k-1}{2} - \frac{n+1}{4}$. But if $\frac{n+1}{2} < k \le n$, then $e = \frac{k-1}{2} - \frac{n+1}{4}$, f = 0, g = 0, and

 $h = \frac{k-1}{2} - \frac{3n-1}{4}$. By setting both of those equations we have

$$\begin{bmatrix} e-g\\f-h \end{bmatrix} = (y_1 - x_1) \begin{bmatrix} \frac{n+1}{2}\\\frac{n-1}{2} \end{bmatrix} + (y_2 - x_2) \begin{bmatrix} \frac{n-1}{2}\\\frac{n+1}{2} \end{bmatrix} + (y_3 - x_3) \begin{bmatrix} 1\\1 \end{bmatrix}$$
(2.4)

Substraction the second by the first component of Equation 2.4, then if $1 \le k \le \frac{n+1}{2}$, we have $(y_1 - x_1) + (x_2 - y_2) = 2(\frac{n-3}{4})$. This implies $y_1 + x_2 \ge 2(\frac{n-3}{4})$ and hence $y_1 \ge \frac{n-3}{4}$ or $x_2 \ge \frac{n-3}{4}$. And if $\frac{n+1}{2} < k \le n$, we have $(y_1 - x_1) + (x_2 - y_2) = 2(\frac{n-1}{4})$. This implies $y_1 + x_2 \ge 2(\frac{n-1}{4})$ and hence $y_1 \ge \frac{n-1}{4}$ or $x_2 \ge \frac{n-1}{4}$. Hence we now have that $\exp_D(v_k) \ge \frac{1}{4}(n^2 - 1) + \frac{k-1}{2}$. Then for each k where $1 \le k \le n$ we have $\exp_D(v_k) \ge \frac{1}{4}(n^2 - 1) + \lfloor \frac{k}{2} \rfloor$.

Lemma 2.2. Let *D* be an asymmetric primitive two-coloured cycle of length n, then the exponent v_k of $D \exp_D(v_k) \leq \frac{1}{4}(n^2 - 1) + \lfloor \frac{k}{2} \rfloor$.

Proof. Let *D* be an asymmetric primitive two-coloured cylce of length *n*. If *D* is primitive, then *n* have to be odd and $n \ge 3$. Moreover, if *D* is asymmetric, for each v_k on *D* there is a $(1,1)^T$ -closed walk from v_k to itself of length 2. For k = 1, there is a $(r,b)^T$ -walk from v_1 to v_j with composition $(\frac{n^2-1}{8}, \frac{n^2-1}{8})^T$. We show that $\exp_D(v_1) = \frac{1}{4}(n^2-1)$. First, we show $\exp_D(v_1) \le \frac{1}{4}(n^2-1)$. Let $P_{1,j}$ be a path which start from v_1 to v_j . There is a $(r,b)^T$ -walk from v_1 to v_j . In this case, the walk that starts at v_1 , moves to v_j along the path $P_{1,j}$, and moves $(r(p_{1,j}) - b(p_{1,j}))$ times around the cycle γ_1 is the shortest walk from v_1 to v_j . This composition of this walk is

$$\begin{bmatrix} r \\ b \end{bmatrix} = \begin{bmatrix} (r(p_{1,j}) \\ b(p_{1,j}) \end{bmatrix} + (r(p_{1,j}) - b(p_{1,j})) \begin{bmatrix} \frac{n-1}{2} \\ \frac{n+1}{2} \end{bmatrix}.$$

Notice that $P_{1,j}$ is a path from v_1 to v_j where $b(p_{1,j}) = 0$. Then the composition of its walk becomes

$$\begin{bmatrix} r \\ b \end{bmatrix} = (r(p_{1,j}) - b(p_{1,j})) \begin{bmatrix} \frac{n+1}{2} \\ \frac{n+1}{2} \end{bmatrix}.$$

We find that $P_{1,j} \leq \frac{n-1}{4}$. This implies $r(p_{1,j}) + b(p_{1,j}) \leq \frac{n-1}{4}$, hence $r(p_{1,j}) - b(p_{1,j}) \leq r(p_{1,j}) + b(p_{1,j}) \leq \frac{n-1}{4}$, then

$$\left[\begin{array}{c}r\\b\end{array}\right] \le \left[\begin{array}{c}\frac{n^2-1}{8}\\\frac{n^2-1}{8}\end{array}\right]$$

Now using $(1,1)^T$ -walks, we can extend the walk into $(t,t)^T$ -walk with $t = \frac{n^2 - 1}{8}$ then

$$\exp_D(v_1) \leq \frac{1}{4}(n^2 - 1).$$

Next we show $\exp_D(v_1) \ge \frac{1}{4}(n^2 - 1)$. Let *D* be an asymmetric primitive two-coloured cylce of length *n*. Since *D* is primitive, then *n* must be odd and $n \ge 3$. Furthermore, since *D* is asymmetric, for v_1 on *D* there is a $(1,1)^T$ -closed walk from v_1 to itself of length 2. Let $p_{1,j}$ be a path which connect v_1 to v_j on *D* is a $(r_{p_{1,j}}, b_{p_{1,j}})^T$ -path consist $r_{p_{1,j}}$ red arcs and $b_{p_{1,j}}$ blue arcs. For v_1 on *D*, then $(r,b)^T$ -walk from v_1 to v_j is of the form

$$\begin{bmatrix} r \\ b \end{bmatrix} = \begin{bmatrix} r_{p_{1,j}} \\ b_{p_{1,j}} \end{bmatrix} + x_1 \begin{bmatrix} \frac{n+1}{2} \\ \frac{n-1}{2} \end{bmatrix} + x_2 \begin{bmatrix} \frac{n-1}{2} \\ \frac{n+1}{2} \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

for some nonnegative integers x_1 , x_2 and x_3 .

For each v_j on D, there is a $(r,b)^T$ -walk from v_1 to v_j . If n = 4m + 1, we take a $(r,b)^T$ -walk from v_1 to $v_{\frac{n+1}{2}}$ and to $v_{\frac{n+1}{2}}$. And if n = 4m + 3, we take a $(r,b)^T$ -walk from v_1 to $v_{\frac{n+1}{2}}$ and to $v_{\frac{n+3}{2}}$. Then we find $\exp_D(v_k) \ge \frac{1}{4}(n^2 - 1)$.

There are red path of length *e* and blue path of length *f* from v_k to $v_{\frac{n-1}{2}}$ if n = 4m + 1 and to $v_{\frac{n+1}{2}}$ if n = 4m + 3, then the $(r, b)^T$ -walk is of the form

$$\begin{bmatrix} r \\ b \end{bmatrix} = \begin{bmatrix} e \\ f \end{bmatrix} + x_1 \begin{bmatrix} \frac{n+1}{2} \\ \frac{n-1}{2} \end{bmatrix} + x_2 \begin{bmatrix} \frac{n-1}{2} \\ \frac{n+1}{2} \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

for some nonnegative integers e, f, x_1, x_2 and x_3 .

There are also red path of length *g* and blue path of length *h* from v_k to $v_{\frac{n+1}{2}}$ if n = 4m + 1 and to $v_{\frac{n+3}{2}}$ if n = 4m + 3, then the $(r, b)^T$ -walk is of the form

$$\begin{bmatrix} r \\ b \end{bmatrix} = \begin{bmatrix} g \\ h \end{bmatrix} + y_1 \begin{bmatrix} \frac{n+1}{2} \\ \frac{n-1}{2} \end{bmatrix} + y_2 \begin{bmatrix} \frac{n-1}{2} \\ \frac{n+1}{2} \end{bmatrix} + y_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

for some nonnegative integers g, h, y₁, y₂ and y₃. We note that if n = 4m + 1, then $e = \frac{n-1}{4}$, f = 0, g = 0 and $h = \frac{n-1}{4}$. But if n = 4m + 3, then $e = \frac{n-1}{2}$, $f = \frac{n+1}{4}$, $g = \frac{n+1}{4}$, and $h = \frac{n-1}{2}$. By setting both of those equations we have

$$\begin{bmatrix} e-g\\f-h \end{bmatrix} = (y_1 - x_1) \begin{bmatrix} \frac{n+1}{2}\\\frac{n-1}{2} \end{bmatrix} + (y_2 - x_2) \begin{bmatrix} \frac{n-1}{2}\\\frac{n+1}{2} \end{bmatrix} + (y_3 - x_3) \begin{bmatrix} 1\\1 \end{bmatrix}$$
(2.5)

Substraction the second by the first component of Equation 2.5, then we have if n = 4m + 1, we have $(y_1 - x_1) + (x_2 - y_2) = 2(\frac{n-1}{4})$. This implies $y_1 + x_2 \ge 2(\frac{n-1}{4})$ and hence $y_1 \ge \frac{n-1}{4}$ or $x_2 \ge \frac{n-1}{4}$. And if n = 4m + 3, we have $(y_1 - x_1) + (x_2 - y_2) = 2(\frac{n-3}{4})$. This implies $y_1 + x_2 \ge 2(\frac{n-3}{4})$ and hence $y_1 \ge \frac{n-3}{4}$ or $x_2 \ge \frac{n-3}{4}$. Hence we now have that $\exp_D(v_k) \ge \frac{1}{4}(n^2 - 1)$. Since we have $\exp_D(v_k) \le \frac{1}{4}(n^2 - 1)$ and also $\exp_D(v_k) \ge \frac{1}{4}(n^2 - 1)$ imply that $\exp_D(v_k) = \frac{1}{4}(n^2 - 1)$.

For $k \neq 1$, there is a $(r,b)^T$ -walk from v_k to v_j that starts from v_k to v_1 and then continue from v_1 to v_j . Let $p_{k,1}$ be a path from v_k to v_1 of length $\lfloor \frac{k}{2} \rfloor$. We have the composition of $(r,b)^T$ -walk from v_1 to v_j is of the form

$$\left[\begin{array}{c}r\\b\end{array}\right] = \left[\begin{array}{c}\frac{n^2-1}{8}\\\frac{n^2-1}{8}\end{array}\right].$$

Then we find the $(r, b)^T$ -walk from v_k to v_j is of the form

$$\begin{bmatrix} r \\ b \end{bmatrix} \leq \lfloor \frac{k}{2} \rfloor + \begin{bmatrix} \frac{n^2 - 1}{8} \\ \frac{n^2 - 1}{8} \end{bmatrix}.$$

Then we have $\exp_D(v_k) \leq \frac{1}{4}(n^2 - 1) + \lfloor \frac{k}{2} \rfloor$.

Theorem 2.3. Let *D* be an asymmetric primitive two-coloured cycle of length *n*, then the exponent v_k of $D \exp_D(v_k) = \frac{1}{4}(n^2 - 1) + \lfloor \frac{k}{2} \rfloor$.

Proof. Let *D* be an asymmetric primitive two-coloured cylce of length *n*. Since *D* is primitive, then *n* must be odd and $n \ge 3$. Lemma 2.1 and Lemma 2.2 imply that $\exp_D(v_k) = \frac{1}{4}(n^2 - 1) + \lfloor \frac{k}{2} \rfloor$.

REFERENCES

- B. L. Shader and S. Suwilo, "Exponent of nonnegative matrix pairs," *Linear Algebra Appl.*, vol. 363, pp. 275–293, 2003.
- [2] S. Suwilo, "2-exponents of two-coloured lollipops," *Linear Algebra Appl.*, vol. 21, pp. 11–22, 2008.
- [3] Y. Gao and Y. Shao, "Generalized exponents of primitive two-colored digraph," *Linear Algebra Appl.*, vol. 430, pp. 1550–1565, 2009.
- [4] V. M. Fomichev and Y. E. Avezova, "The exact formula for the exponents of the mixing digraphs of register transformations," *Journal of Applied and Industrial Mathematics*, vol. 2, 2011.
- [5] S. Suwilo, "Vertex exponent of two-colored primitive external ministrong digraphs," *Global Journal of Technology and Optimization*, vol. 14, pp. 308–320, 2020.
- [6] A. Syahmarani and S. Suwilo, "Vertex exponents of a class of two-colored hamiltonian digraphs," *Journal of the Indonesian Mathematical Society*, vol. 18, pp. 1–19, 2012.