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Abstract. The diagonalization argument is one way that researchers use to prove the set of
real numbers is uncountable. In the present paper, we prove the same thing by using the
supremum property in the set of real numbers.
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Abstrak. Argumen diagonalisasi merupakan salah satu cara yang digunakan para peneliti
untuk membuktikan himpunan bilangan real tidak terhitung. Pada paper ini, dibuktikan hal
yang sama dengan menggunakan sifat supremum pada himpunan bilangan real.
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1 Introduction

Any real number can be determined by a possibility infinite decimal representation. The uncount-

ability real numbers can be proven by statement that the integer number set and the real number

set cannot put into one-to-one correspondence. That we denote the positive integer real num-

bers by N and the real numbers by R. The positive integer real number is also called natural

number. It is impossible to create an injective function f : R→ N. Cantor [1] prove it by us-

ing Bolzano-Weierstrass Theorem. In [2] he proved it again later using argument diagonal called

Cantor diagonal argument or Cantor diagonal. He proved that there exists ”larger” uncountabily

infinite set than the countability infinite set of integers. Gray in [3] using Cantor method lead to

computer program to determine the transcendental number as e or π .

In this paper, we also prove the real number set is uncountable use the Cantor Diagonalization, but

concentrate on the non-denumerable proof. To do that, we using the supremum property in R, that

is for every non-empty subset in R with an upper bound, there exists a least upper bound, called

supremum. The consequence of this property is subset has greatest lower bound, called infimum.

The basic concepts such as supremum, uncountable and denumerable can be find in [4].
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2 Main Results

In this section, we will look another prove of an uncountable set for the set which is a collection

of all real numbers.

Theorem. The real number sets is uncountable.

Proof. We prove by a contradiction ways. Suppose the real number set R is denumerable, then

there exists a bijective function f : N→ R. We give the following two real sequences recursively

defined by

x1 = f (1)

y1 = f
(

min{n ∈ N | x1 < f (n)}
)

xn+1 = f
(

min{n ∈ N | xn < f (n)< yn}
)

yn+1 = f
(

min{n ∈ N | xn+1 < f (n)< yn}
)
.

Then for every n ∈ N, we get

xn < xn+1 < yn+1 < yn.

We will show that xn < ym for every n,m in N. Suppose there exists n0,m0 in N such that xn0 ≥ ym0 .

Since xn < yn for every natural number n, it follow that for n0 < m0 or n0 > m0

(i) if n0 < m0, then xn0 < xm0 < ym0 . Its contradicts the fact that xn0 ≥ ym0 .

(ii) if m0 < n0, then xm0 < xn0 < yn0 < ym0 . It is a contradiction with xn0 ≥ ym0 .

Therefore

xn < ym ∀n,m ∈ N (1)

For every n ∈ N, we create the set

A =
{

ym | xn < ym ∀m ∈ N
}
,

then we get the following conditions.

(i) A 6= /0.

(ii) A is a lower bounded set in R by xn for every n ∈ N.

By the greatest lower bound property, there exists a∗ = infA in R for every natural number m.

We will show for every n∈N implies xn < a∗. Suppose there exists n0 ∈N such that a∗ ≤ xn0 , then

a∗ ≤ xn0 < xn0+1. By the definition of infimum, there exists m0 ∈ N such that a∗ < ym0 < xn0+1.

This is contradiction with Eq. (1). Therefore, we have

xn < a∗ < ym ∀n,m ∈ N

Furthermore, since f is a surjective function, we know that there exists k ∈N such that f (k) = a∗.

By the definition of

ym = f
(

inf{m ∈ N | xm+1 < f (m)< ym}
)
.
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Then for every m ∈ N, there exists γ̇m ∈ N such that ym = f (γ̇m). So

ym = f (γ̇m) = f
(

inf{m ∈ N | xm+1 < f (m)< ym}
)
,

where γ̇m = inf{m ∈ N | xm+1 < f (m)< ym} and we also have

xm+1 < a∗ = f (k)< ym.

Therefore k ≤ γ̇m.

By the similar argument, we note that

xm < xm+1 < f (γ̇m+1) = ym+1 < ym,

then γ̇m+1 ≤ γ̇m. But since

ym+1 = f (γ̇m+1)< ym = f (γ̇m)

and f is an injective function, therefore γ̇m+1 6= γ̇m. Thus,

γ̇m+1 < k < γ̇m ∀m ∈ N (2)

In this case, k < ∞, 1≥ γ̇1 and γ̇m+1 < γ̇m +1 for every m ∈ N, then for every k > m we get

γ̇m < γ̇m−1 +1 < γ̇m−2 +2 < · · ·< γ̇1 +m−1≤ m < k,

which is contradiction with Eq. (2). Therefore, R is non-denumerable. �
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