

Journal of Research in Mathematics Trends and Technology

The Cesàro Operator on Some Sequence Spaces in Riesz Space of Non-Absolute Type

E. Herawati^{1*} and Supama²

¹Department of Mathematics, Universitas Sumatera Utara, Medan, 20155, Indonesia ²Department of Mathematics, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia

Abstract. The Cesàro operators *C* are investigated on the class *E*-valued sequence spaces $c_0(E)$, c(E) and $\ell_{\infty}(E)$ with *E* is a Riesz space. Besides, we also carry out that *C* are order bounded operators.

Keywords: Banach spaces, Bounded operator, Ideal, Regular operator, Riesz spaces.

Abstrak. Operator Cesàro C diteliti atas kelas ruang barisan bernilai- $E c_0(E)$, c(E) dan $\ell_{\infty}(E)$ dengan E merupakan ruang Riesz. Selain itu, juga diperoleh bahwa C merupakan operator terbatas terurut.

Kata Kunci: Ruang Banach, Operator terbatas, Ideal, Operator regular, Ruang Riesz.

Received 04 August 2020 | Revised 29 August 2020 | Accepted 30 September 2020

1 Introduction

The operator that acting on sequences on functions based on an averaging process is called the Cesàro operator. This operator have been studied in a variety of Banach spaces [1, 2]. For the Fréchet spaces, that is generalization of Banach spaces, this operator also studied [3]. Moreover, by using the convergence topology in non-negative real number, the Cesàro operator studied in the real non-negative sequence spaces and in the quojection Fréchet spaces [4]. When X has an order structure, Herawati [5] introduced space of sequence in X and studied some properties by using the order convergence. In the present paper, by using the certain type of the space in [6]. We analyze the order continuous of the Cesàro operator and show this operators are order bounded.

Throughout the sequel, we denotes *E* as a Riesz space and its cone positive by E^+ . A Riesz space *E* is called *order complete*, if every non-empty subset of *E* has a supremum and an infimum. The notation $x_n \downarrow$ is used for decreasing sequence in *E* and $x_n \downarrow x_0$ proved $x_n \downarrow$ and $\inf(x_n) = x_0$ exists in *E*.

^{*}Corresponding author at: Department of Mathematics, Universitas Sumatera Utara, Medan, 20155, Indonesia

E-mail address: elvina@usu.ac.id

Copyright © 2020 Published by Talenta Publisher, e-ISSN: 2656-1514, DOI: 10.32734/jormtt.v2i2.4748 Journal Homepage: http://talenta.usu.ac.id/jormtt

A sequence (x_n) in *E* is said *order convergent to* x_0 *in E*, if there exists a sequence $(p_n) \subset E$ with $p_n \downarrow \vartheta$ and $|x_n - x_0| \leq p_n$ for each *n*, written as $x_n \xrightarrow{\vartheta} x_0$. A sequence $(x_n) \subset E$ is said to be *order-Cauchy*, if there exists $p_n \downarrow \vartheta$ in *E* and $|x_m - x_n| \leq p_n$ for all $m \geq n \geq 1$. If every order-Cauchy sequence is order convergent, then *E* is called *order-Cauchy complete*. For all this notation, we refer to [7]. We shall write $\Omega(E)$ and $\Phi(E)$ for the vector space consisting of all sequences and finitely non-zero sequence from a vector space *E*, respectively.

Furthermore, the collection of all linear operators from a Riesz space *E* to another Riesz space *F*, denoted by $\mathcal{L}(E,F)$, and the subspace of $\mathcal{L}(E,F)$ consisting of all order bounded operators, denoted by $\mathcal{L}^{b}(E,F)$. The σ -order continuous operators denoted by $\mathcal{L}^{so}(E,F)$ and this space is a subspace of $\mathcal{L}^{b}(E,F)$.

Concerning the above spaces, we have

Theorem 1. (see [5])

- (i) If *E* is an order complete, then $\Lambda(E)$ and $\Phi(E)$ is also an order complete.
- (ii) The Riesz subspace $\Lambda(E)$ of $\Omega(E)$ order complete if and only if it is ideal in $\Omega(E)$.

Theorem 2. (see [5])

If (T_n) is an increasing or decreasing sequence of operators in $\mathcal{L}^b(E,F)$ such that $T_n x \xrightarrow{\vartheta} T x$ for $x \in E$ and for some $T \in \mathcal{L}(E,F)$, then

$$T \in \mathcal{L}^{b}(E,F)$$
 and $T_{n} \xrightarrow{\vartheta} T$ in $\mathcal{L}^{b}(E,F)$.

2 Cesàro Operator on Special Case of $\Lambda(E)$

Let *E* be a Riesz space, the non-absolute type *E*-valued sequence space is special case of *E*-valued sequence space $\Lambda(E)$, given as follows

$$c_{0}(E) = \left\{ x = (x_{n}) \in \Omega(E) \mid x_{n} \xrightarrow{\vartheta} \vartheta \text{ in } E \right\}$$

$$c(E) = \left\{ x = (x_{n}) \in \Omega(E) \mid \text{ there exists } x_{0} \in E \text{ such that } x_{n} \xrightarrow{\vartheta} x_{0} \right\}$$

$$\ell_{\infty}(E) = \left\{ x = (x_{n}) \in \Omega(E) \mid \text{ there exists } x_{0} \in E \text{ such that } \sup_{n \ge 1} \{x_{k}\} = x_{0} \right\}$$

It is easy to verify that *E*-valued sequence space $c_0(E)$ and $\ell_{\infty}(E)$ are ideals in $\Omega(E)$ and c(E) is a Riesz subspace of $\Omega(E)$. Furthermore, if $x = (x_n) \in \Omega(E)$, the operator $C : \Omega(E) \longrightarrow \Omega(E)$ defined by

$$C(x) = \left(x_1, \frac{x_1 + x_2}{2}, \cdots, \frac{x_1 + x_2 + \cdots + x_n}{n}, \cdots\right)$$
$$= \left(\frac{1}{n} \sum_{k=1}^n x_k\right)_{n=1}^{\infty}$$

is called Cesàro Operator.

Theorem 3.

Let *E* be a Riesz space and $x = (x_n) \in \Omega(E)$, then $x \in c_0(E)$ if and only if $C(|x|) \in c_0(E)$. **Proof.**

For proving the necessity. Let $x \in c_0(E)$, then $x_n \xrightarrow{\vartheta} 0$, so there exists a sequence $p_n \downarrow \vartheta$ in *E* such that $|x_n| \leq p_n$ for each *n*. Since

$$C(|x|) = \left(\frac{1}{n}\sum_{k=1}^{n}|x_k|\right)_{n=1}^{\infty}$$

and for every $n \in E$

$$\frac{1}{n}\sum_{k=1}^n |x_k| \le p_n,$$

it follow that

$$\frac{1}{n}\sum_{k=1}^n |x_k| \stackrel{\vartheta}{\longrightarrow} 0$$

for every *n*. Therefore $C'(|x|) \in c_0(E)$.

For sufficiency. If $C(|x|) \in c_0(E)$, then

$$\frac{1}{n}\sum_{k=1}^n |x_k| \stackrel{\vartheta}{\longrightarrow} 0 \quad \text{in } E.$$

It means, there exists a sequence $p_n \downarrow \vartheta$ in *E* and for every *n*,

$$\frac{1}{n}\sum_{k=1}^{n}x_{k} \le \frac{1}{n}\sum_{k=1}^{n}|x_{k}| \le p_{n}$$

So $x = (x_n) \in c_0(E)$.

In the similar ways, we could prove the following theorem.

Theorem 4.

If $x = (x_n) \in \Omega(E)$ and $\Lambda = \{c, \ell_\infty\}, x \in \Lambda(x)$ if and only if $C(|x|) \in \Lambda(x)$.

3 Order Boundedness

The proof of the Cesàro operators *C* on $\Lambda(E)$ order bounded, can be made to depend on the Riesz space *E* is an order complete.

Theorem 5.

Let $\Lambda(E)$ be a Riesz subspace of $\Omega(E)$ and *C* be a Cesàro operator on $\Lambda(E)$, then:

(i)
$$C \in \mathcal{L}^+(\Lambda(E))$$

(ii) $C \in \mathcal{L}^b(\Lambda(E))$

Proof.

For $\Lambda = c_0$. It is easy to verify (i) to proof point (ii). So, we just prove the point (ii). Since $c_0(E)$ is an ideal of $\Omega(E)$, it follow that it is order-Cauchy complete.

Furthermore, for any $x \in c_0(E)$, the Cesàro operator *C* on $c_0(E)$ is a sequence in *E*,

$$C(x) = \left(\frac{1}{n}\sum_{k=1}^{n} x_k\right).$$

Since

$$\frac{1}{n}\sum_{k=1}^n x_k \le \sum_{k=1}^n |x_k|$$

and for $x \in c_0(E)$

$$\sum_{k=1}^n |x_k| \longrightarrow 0,$$

we can define a sequence

$$(z_n) = \left(\frac{1}{n}\sum_{k=1}^n |x_k|\right)$$

with $z_n \ge 0$ for every *n*.

Define the operator $T_1: c_0(x) \longrightarrow c_0(x)$ by

$$x \longmapsto T_1 x = \left(\sum_{k=1}^n |x_k|\right)_n$$

Then $T_1 \in \mathcal{L}^+(c_0(E))$ and for every $x \in c_0(E)$

$$C(x) \le T_1(x).$$

It means $C \in \mathcal{L}^r(c_0(E))$, that is the Cesàro operator C on $c_0(E)$ is a regular operator. Since $c_0(E)$ is an order-Cauchy complete, it follow that $C \in \mathcal{L}^b(\Lambda(E))$.

For $\Lambda = \ell_{\infty}$, then $\ell_{\infty}(E)$ is an ideal of $\Omega(E)$. If $x \in \ell_{\infty}(E)$ is given, then Cesàro operator

$$C(|x|) = \left(\frac{1}{n}\sum_{k=1}^{n}|x_k|\right) \in \ell_{\infty}(E).$$

Since for every $x \in \ell_{\infty}(E)$

$$\frac{1}{n}\sum_{k=1}^{n}|x_{k}|\leq\frac{2}{n}\sum_{k=1}^{n}|x_{k}|,$$

and if we define the operator $T_2: \ell_{\infty}(E) \longrightarrow \ell_{\infty}(E)$ by

$$T_2 = \left(\frac{2}{n}\sum_{k=1}^n |x_k|\right)_{n=1}^\infty$$

then $T_2 \in \mathcal{L}^+(\ell_{\infty}(E))$ and for every $x \in \ell_{\infty}(E)$

$$C(x) \leq T_2(x).$$

Since $\ell_{\infty}(E)$ is an order-Cauchy complete, then $C \in \mathcal{L}^{b}(\ell_{\infty}(E))$.

Acknowledgement

The first author is grateful to the second author for the time and opportunity to discuss this small study.

REFERENCES

- A. Brown, P. R. Halmos, and A. L. Shields, "Cesàro operator," Acta Sci. Math. (Szeged), vol. 26, no. 125–137, 1965.
- [2] G. Leibowitz, "Spectra of discrete cesàro operator," *Tamkang J. Math.*, vol. 3, pp. 123–132, 1972.
- [3] A. A. Albanese, J. Bonet, and W. J. Ricker, "Convergence of arithmetic means of operators in fréchet spaces," *Journal of Mathematical Analysis and Applications*, vol. 401, no. 1, pp. 160–173, May 2013. [Online]. Available: https://doi.org/10.1016/j.jmaa.2012.11.060
- [4] —, "The cesàro operator in the fréchet spaces l^{p+} and l^{p-}," Glasgow Mathematical Journal, vol. 59, no. 2, pp. 273–287, May 2017. [Online]. Available: http://doi.org/10.1017/S001708951600015X
- [5] E. Herawati, Supama, M. Mursaleen, and M. Nasution, "Some characterizations of riesz- valued sequence spaces generated by an order φ-function," *Numerical Functional Analysis and Optimization*, vol. 39, no. 1, pp. 38–46, 2018. [Online]. Available: https://doi.org/10.1080/01630563.2017.1351987
- [6] K. Yosida, Functional Analysis. Berlin: Springer-Verlag, 1980.
- [7] A. C. Zaanen, *Introduction to operator theory in Riesz spaces*. Springer Science & Business Media, 2012.