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Abstract. In this paper, some vector valued sequence spaces Γ f (X) and Λ f (X) using mod-
ulus function are presented. Furthermore, we examined some topological properties of these
sequence spaces equipped with a paranorm.
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Abstrak. Pada paper ini, diperkenalkan beberapa ruang barisan bernilai vektor Γ f (X) dan
Λ f (X) menggunakan fungsi modulus. Lebih lanjut, dipelajari beberapa sifat-sifat topologi
dari ruang-ruang barisan ini dikenakan suatu paranorma tertentu.
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1 Introduction

Let X be a vector space and R be the set of real numbers. A function f : R+∪{0}→ R+∪{0} is

called modulus function if following condition of f satisfying:

1. f is vanishing at zero

2. f satisfies triangle inequality

3. f is an increasing function i.e. f (·) ↑

4. f is a continuous function from the right at 0 [1]

The function f must be continuous for every element x in (0,∞). The space of all real number

sequences (xn) such that the infinite series of absolute modulus function is finite denoted by `( f )

[2]
∞

∑
n=1

f (|xn|)< ∞.

The space `( f ) becomes a FK-space under the F-norm

p(x) =
∞

∑
n=1

f (|xn|)< ∞.
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Adnan [3] examined the FK-space properties of an analytic and entire real sequence space using

modulus function. He showed the characterization to matrix transformation of Ruckle’s space `( f )

into analytic FK-space. For the theory of FK-space we refer to Banas and Mursaleen [4].

Through the article Ω(X), Γ f (X), Λ f (X) denoted by the space of vector value sequences, entire

vector value sequence space and analytic vector value sequence space. The vector value sequence

space studied by some authors [5, 6, 7, 8, 9, 10, 11, 12, 13]. Further, the concept of sequence space

using modulus function was investigated by [14, 15, 16, 17, 18].

Recently, Herawati [5] studied the geometric of the vector value sequence spaces defined by order-

ϕ function under Lattice norm. Further, Gultom [6] studied some topologies properties of a finite

arithmatic mean vector value sequence space denoted by Wf (X) for X is a linear space and f is a

ϕ-function.

A functional is called paranormed if satisfies the properties p : X → R that satisfies the properties

p(θ) = 0, with θ is the zero vector in X , non-negative, p satisfies triangle inequalities, even and

every real sequence (λn) with |λn−λ | → 0. The space X with paranorm p is called paranormed

space, written as X = (X , p) [1, 19].

In this work, we define the space of vector value sequences Γ f (X) and Λ f (X) called entire and

analytic vector valued sequence spaces generated by modulus function and study the topological

properties of the sets equipped with paranorm.

2 Main Results

In this main result section, firstly, we introduce paranorm on this space and examine some topo-

logical properties such as complete properties. Let X be a Banach space and f be a modulus

function. Let y(n) = f (‖x(n)‖X)∈R for all natural numbers n, then we get a sequence y = (y(n)).

We define the sets

Γ f (X) =

{
x = (x(n))n∈N : x(n) ∈ X and (y(n))

1
n → 0,n→ ∞

}

Λ f (X) =

{
x = (x(n))n ∈ N : x(n) ∈ X and sup

n∈N
{(y(n))

1
n }< ∞

}

Theorem 1.
The sets Γ f (X) and Λ f (X) are vector spaces.

Proof.
Let x,z be any elements in Γ f (X), then

lim
n→∞

(y(n))
1
n = 0 and lim

n→∞
(w(n))

1
n = 0

for n→ ∞, with y(n) = f (x(n) and w(n) = f (z(n)) for each natural number n. We will apply the

following inequality : if an,bn ∈ R and 0≤ qn ≤ sup qn = H for each natural number n, then

|an +bn|qn ≤M(|an|qn)+ |bn|qn
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where M = max{1,2H−1}. Therefore,

(y(n)+w(n))
1
n ≤ (y(n))

1
n +(w(n))

1
n

Since (qn) = (1
n), then H = sup 1

n = 1. Thus

(y(n)+w(n))
1
n ≤ (y(n))

1
n +(w(n))

1
n

Since (y(n))
1
n → 0 and (w(n))

1
n for n→ ∞, then (y(n)+w(n))

1
n → 0 for n→ ∞. Therefore, we

obtain x+ y ∈ Γ f (X). Further, for element x ∈ Γ f (X) and α ∈ R, then

(y(n))
1
n → 0,n→ ∞

Because of an increasing function f and the positivity of |α|, then from the Archimedean proper-

ties, there exists natural number n0 with

f (|α|‖x(n)‖)≤ f (2n0‖x(n)‖)

Since f satisfies42-condition, we get

( f (2n0‖x(n)))
1
n = K

n0
n ( f (‖x(n)‖))

1
n → 0

for each natural number n. It shows that αx ∈ Γ f (X). Because x+ z ∈ Γ f (X) and αx ∈ Γ f (X) for

each x,y ∈ Γ f (X) and each α ∈ R, we get Γ f (X) is a vector or linear space and the proof of the

theorem is finished. In the same way, it can be shown that Λ f (X) is a vector space. �

Theorem 2.
A functional p : Γ f (X)→ R defined by

p(x) = sup
n≥1

{
(y(n))

1
n

}

is a paranorm.

Proof.
Let x be an element in Γ f (X). It is clear that the functional p is non-negative, p(θ) = 0, with θ is

the zero vector in X and even, for each x ∈ Γ f (X). Now, we will show that p satisfies the triangle

inequality. To do that, take any x,z ∈ Γ f (X), then

lim
n→∞

(y(n))
1
n = 0 and lim

n→∞
(w(n))

1
n = 0

for n→ ∞, with y(n) = f (x(n)) and w(n) = f (z(n)) for each n ∈ N. we obtain

sup

{
(y(n)+w(n))

1
n

}
≤ sup

{
(y(n))

1
n +(w(n))

1
n

}

Therefore, there’s vector sequences of x,y ∈ Γ f (X), we get p satisfies the triangle inequality.

Next, we will show that p satisfies the continuity of scalar multiplication. To do that, take any real
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sequence (λn) and (x(n)) ∈ Γ f (X) with |λn−λ | → 0 for n ∈ ∞. We have

( f (‖x(n))‖X))
1
n = ( f (‖λkx(n)−λx(n)‖))

1
n

= ( f (‖(λn−λ )x(n)‖) + ‖λ (x(n)− x)‖))
1
n

≤ (( f |λn−λ |‖x(n)‖ + |λ |‖(x(n)− x)‖)
1
n

and

p(λnx(n)−λx(n)) = sup {( f (‖λnx(n)−λx(n)‖))
1
n }

≤ |λn−λ |p(x(n)+ |λ |p(x(n)− x)→ 0

Hence, p(λnx(n)−λx(n))→ 0. The proof of the theorem is finished. �

Theorem 3.
The vector spaces of Γ f (X) and Λ f (X) are complete paranormed sequence space under the para-

norm defined in Theorem 2.

Proof.
Take any Cauchy sequence (xi) in Γ f (X) with xi = (xi(n)) = (xi(1),xi(2), ...,). Therefore, for any

positive real number ε , there exists i0 ∈ N, for all j ≥ i≥ i0, we get

p(x j− xi) = sup

{
( f (‖x j(n)− xi(n)‖))

1
n

}
< ε

Since sup ( f‖x j(n)− xi(n)‖)) 1
n < ε , we have ( f (‖x j(n)− xi(n)‖)) 1

n < ε for ε > 0. Since f is a

modulus function, then ‖x j(n)− xi(n)‖ = 0 for each natural number n. In other words, ‖x j(n)−
xi(n)‖< ε . It shows that for each natural number n of the sequence (x j(n)) is a Cauchy. Since X

is a complete normed space, then (x j(n)) converges to x(n) ∈ X . Hence, lim
j→∞

x j(n) = x(n) for all

n. Therefore, there’s sequence x = (x(n)) = (x(1),x(2), ...,) such that

sup

{
( f (‖x− xi‖))

1
n

}
= sup

{
( f (‖ lim

i→∞
x− xi‖))

1
n

}

= sup

{
lim
i→∞

( f (‖x− xi‖))
1
n

}

= lim
i→∞

sup

{
( f (‖x− xi‖))

1
n

}

for every i≥ i0. By using the definition of paranorm, we get

p(x− xi) = sup

{
( f (‖x− xi‖))

1
n

}
< ε

It shows that xi → x for i→ ∞. Then it will be shown that x ∈ Γ f (X). Using the continuous
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property of f , we get

( f (‖x‖))
1
n = ( f (‖ lim

i→∞
xi‖))

1
n

= lim
i→∞

( f (‖xi‖))
1
n → 0

for i→ ∞. Hence, x ∈ Γ f (X). The proof of this theorem is finished. �

3 Conclusions

According to the main results, it can be concluded Γ f (X) and Λ f (X) are complete paranormed

sequence space under the paranorm.
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[10] M. Et, “Spaces of cesáro difference sequences of order r defined by a modulus function in a

locally convex space,” Taiwanese Journal of Mathematics, vol. 10, no. 4, pp. 865–879, 2006.

[11] M. Et, A. Gökhan, and H. Altinok, “On statistical convergence of vector-valued sequences

associated with multiplier sequences,” Ukrainian Mathematical Journal, vol. 58, no. 139,

2006.



Journal of Research in Mathematics Trends and Technology (JoRMTT) Vol. 2, No. 2, 2020 74

[12] B. C. Tripathy and M. Sen, “Vector valued paranormed bounded and null sequence spaces

associated with multiplier sequences,” Soochow Journal of Mathematics, vol. 29, no. 3, pp.

313–326, 2003.

[13] B. C. Tripathy and S. Mahanta, “On a class of vector-valued sequences associated with mul-

tiplier sequences,” Acta Mathematicae Applicatae Sinica, vol. 20, no. 4, pp. 487–494, 2004.

[14] T. Bilgin, “The sequence space l (p, f, q, s) on seminormed spaces,” Bull. Calcutta Math.

Soc, vol. 86, no. 4, pp. 295–304, 1994.

[15] S. Pehlivan and B. Fisher, “On some sequence spaces,” Indian Journal of Pure and Applied

Mathematics, vol. 25, no. 10, pp. 1067–1071, 1994.

[16] A. Waszak, “On the strong convergence in some sequence spaces,” Fasciculi Mathematici,

vol. Nr 33, pp. 125–137, 2002.

[17] V. K. Bhardwaj, “A generalization of a sequence space of ruckle,” Bull. Calcutta Math. Soc,

vol. 95, no. 5, pp. 411–420, 2003.

[18] Y. Altin, “Properties of some sets of sequences defined by a modulus function,” Acta Math-

ematica Scientia Series B English Edition, vol. 29, no. 2, pp. 427–434, 2009.

[19] S. Simons, “The sequence spaces l(pv) and m(pv),” Proceedings of the London Mathematical

Society, vol. s3-15, no. 1, pp. 422–436, 1965.

Attribution-NonCommercial-ShareAlike 4.0 International License. Some rights reserved.

http://creativecommons.org/licenses/by-nc-sa/4.0/

	Introduction
	Main Results
	Conclusions

