Pengaruh Konsentrasi Pelarut NaOH dan Waktu Aging pada Pembuatan Silika Gel dari Fly Ash Batu Bara

Authors

  • Fatimah Universitas Sumatera Utara
  • Muhammad Turmuzi Universitas Sumatera Utara
  • Zanni Latifah Syam Universitas Sumatera Utara
  • Trisna Putri Yunita Universitas Sumatera Utara

DOI:

https://doi.org/10.32734/jtk.v12i2.13314

Keywords:

fly ash, silica gel, silanol, siloxane, aging time

Abstract

Fly ash has the potential to be used as a raw material in the production of silica gel. This study aims to characterize fly ash and silica gel, determine the effect of NaOH concentration and aging time on the manufacture of silica gel, and determine the trapping power of silica gel. In this research, the production of silica gel begins with the washing of fly ash using HCl. Next, NaOH is added with varying concentrations of 1.5 N, 2.5 N, 3.5 N, and 4.5 N. The formed Na2SiO3 is then mixed with H2SO4 of 3 N concentration, with aging times of 12 hours, 15 hours, and 18 hours. The highest yield of silica gel is 49.61% at a NaOH concentration of 4.5 N and an aging time of 15 hours. The highest water vapor adsorption capacity of the silica gel is 883.00 mg/g at a NaOH concentration of 3.5 N and an aging time of 15 hours. SEM-EDX characterization results indicate a diverse morphology and size for both fly ash and silica gel. The SiO2 content in fly ash is 41.64%, while in silica gel, it is 41.42%. FTIR characterization of fly ash and silica gel reveals the presence of functional groups such as silanol (Si-O), siloxane (Si-O-Si), and hydroxyl (Si-OH) which are active sites in silica gel.

Downloads

Download data is not yet available.

References

D. Adak, M. Sarkar, and S. Mandal, “Effect of nano-silica on strength and durability of fly ash based geopolymer mortar,” Constr Build Mater, vol. 70, pp. 453–459, 2014.

Aman, P. Setia Utama, and E. Saputra, “High purity silica from palm oil mill fly ash for catalyst zsm-5 zeolite synthesis,” Applied Science and Technology, vol. 1, no. 1, pp. 267–272, 2016.

Y. A. Sulistiyo, N. Andriana, B. Piluharto, and Z. Zulfikar, “Silica gels from coal fly ash as methylene blue adsorbent: isotherm and kinetic studies,” Bulletin of Chemical Reaction Engineering & Catalysis, vol. 12, no. 2, p. 263, 2017.

Regna Tri Jayanti, Jerry, and Miftahurrahmah, “Ekstraksi silika dari fly ash pabrik kelapa sawit menggunakan variasi pelarut karbonat,” Jurnal Teknik Kimia USU, vol. 12, no. 1, pp. 9–17, 2023.

H. Sharifnasab and M. Y. Alamooti, “Preparation of silica powder from rice husk,” Agricurtural Engineering International, vol. 19, no. 1, pp. 158–161, 2017.

D. O. Latif, A. Rifa’i, and K. B. Suryolelono, “Chemical characteristics of volcanic ash in Indonesia for soil stabilization: morphology and mineral content,” International Journal of GEOMATE, vol. 11, no. 26, pp. 2606–2610, 2016.

A. Yehia, T. R. Boulos, M. B. Morsi, and S. S. Ibrahim, “High quality fused silica from egyptian silica sand concentrate recycling of shredded currency waste of egyptian central bank for making a good quality papers view project processing of an east mediterranean egyptian phosphate view project high quality fused silica from egyptian silica sand concentrate,” International Journal of Science and Engineering Investigations, vol. 6, no. 62, 2017.

A. M. S. H. Amarakoon and Navaratne Senevirathne, “Evaluation of the effectiveness of silica gel desiccant in improving the keeping quality of rice crackers,” International Journal of Science and Research (IJSR), vol. 6, no. 1, pp. 2163–2168, 2017.

A. Mourhly, M. Khachani, A. El Hamidi, M. Kacimi, M. Halim, and S. Arsalane, “The synthesis and characterization of low-cost mesoporous silica SiO2 from local pumice rock,” Nanomaterials and Nanotechnology, vol. 5, 2015.

SNI, “Standar Nasional Indonesia Metode pengujian kadar silika dalam air dengan alat spektrofotometer secara molibdat silikat Badan Standardisasi Nasional,” Jakarta: Badan Standarisasi Nasional, 1991.

X. L. Zhang, G. J. Wu, T. D. Yao, C. L. Zhang, and Y. H. Yue, “Characterization of individual fly ash particles in surface snow at Urumqi Glacier No. 1, Eastern Tianshan,” Chinese Science Bulletin, vol. 56, no. 32, pp. 3464–3473, 2011.

M. N. Akhtar, J. Akhtar, and N. Tarannum, “Physiochemical characterization and dematerialization of coal class F flyash residues from thermal power plant,” Civil Engineering Journal (Iran), vol. 5, no. 5, pp. 1041–1051, 2019.

B. Jha and D. N. Singh, “ChemInform abstract: a review on synthesis, characterization and industrial applications of flyash zeolites,” ChemInform, vol. 43, no. 25, p. no-no, 2012.

P. Bharmoria, P. S. Gehlot, H. Gupta, and A. Kumar, “Temperature-dependent solubility transition of Na2SO4 in water and the effect of NaCl therein: solution structures and salt water dynamics,” Journal of Physical Chemistry B, vol. 118, no. 44, pp. 12734–12742, 2014.

A. Proctor, “X-ray diffraction and scanning electron microscope studies of processed rice hull silica,” Jornal of the American Oil Chemists’ Society, vol. 67, no. 9, pp. 576–584, 1990.

C. A. Morales-Paredes et al., “Silica-derived materials from agro-industrial waste biomass: characterization and comparative studies,” Environ Res, vol. 231, 2023.

C. El Abiad et al., “Porphyrin-silica gel hybrids as effective and selective copper (II) adsorbents from industrial wastewater,” J Environ Chem Eng, vol. 11, no. 3, 2023.

P. S. Utama, R. Yamsaengsung, and C. Sangwichien, “Production and characterization of precipitated silica from palm oil mill fly ash using CO2 impregnation and mechanical fragmentation,” Brazilian Journal of Chemical Engineering, vol. 36, no. 1, pp. 523–530, 2019.

G. Svehla, Vogel: Buku teks aanalisis anorganik kualitatif makro dan semimikro, 5th ed. Jakarta: Kalman Media Pustaka, 1985.

R. Chirinos, H. Rogez, D. Campos, R. Pedreschi, and Y. Larondelle, “Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers,” Sep Purif Technol, vol. 55, no. 2, pp. 217–225, 2007.

S. I. Mussatto, L. F. Ballesteros, S. Martins, and J. A. Teixeira, “Extraction of antioxidant phenolic compounds from spent coffee grounds,” Sep Purif Technol, vol. 83, pp. 173–179, 2011.

N. G. T. Meneses, S. Martins, J. A. Teixeira, and S. I. Mussatto, “Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains,” Sep Purif Technol, vol. 108, pp. 152–158, 2013.

R. K. Iler, The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. New York: John Wiley and Sons Ltd, 1979.

P. Setia Utama, R. Yamsaensung, and C. Sangwichien, “Silica gel derived from palm oil mill fly ash,” Songklanakarin J. Sci. Technol, vol. 40, no. 1, pp. 121–126, 2018.

A. Ubaid, N. Hidayat, and Munasir, “Aging time effect on porous characteristics of natural mud-based silica prepared by hydrothermal-coprecipitation route,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 2017, vol. 202, no. 1.

H. Susilo, A. Putra, and A. Astuti, “Pengaruh konsentrasi NaOH pada sintesis nanosilika dari sinter silika mata air panas sentral, Solok Selatan, Sumatera Barat dengan metode kopresipitasi,” Jurnal Fisika Unand, vol. 5, no. 4, pp. 334–338, 2016.

S. Iswar, W. J. Malfait, S. Balog, F. Winnefeld, M. Lattuada, and M. M. Koebel, “Effect of aging on silica aerogel properties,” Microporous and Mesoporous Materials, vol. 241, pp. 293–302, 2017.

Published

2023-09-28