Karakterisasi Biofilm Selulosa Bakteri dengan Modifikasi Gliserol secara Ex Situ

Authors

  • Vera Diana Panjaitan Universitas Sumatera Utara
  • Iriany Universitas Sumatera Utara
  • Lilis Sukeksi Universitas Sumatera Utara

DOI:

https://doi.org/10.32734/jtk.v13i1.13560

Keywords:

bacterial cellulose, biofilm, drying, glycerol, oven

Abstract

Bacterial cellulose (BC) is biomaterial from bacterial fermentation that contain high purity of cellulose, but 90% of BC pellicles retained water from the fermentation process. In this study, BC was modified with glycerol immersion in different concentrations (0%; 2,5%; 5%; 7,5%; 10%). For wide application, water content on BC must be removed by drying. Various oven drying condition are temperature 80 °C and 120 °C and time 60 minutes. The physical and mechanical properties of the dried BC biofilm were determined including tensile strength and elasticity. BC biofilm bound was identified by FTIR and EDX. The results showed that glycerol concentration was able to increase biofilm elasticity from 3.46% to 27.743%. However, glycerol immersion above 7.5% caused a decrease in the tensile strength of BC biofilm. The drying variation of 120 °C produces the highest tensile strength of 7.161 MPa when soaked in 7.5% glycerol. The drying variation of 80 °C produced a biofilm with the best elasticity of 27.473%. The results of FTIR and EDX analysis confirmed that there were differences in the contents of the modified BC.

Downloads

Download data is not yet available.

References

F. P. Gomes, N. H. C. S. Silva, E. Trovatti, L. S. Serafim, M. F. Duarte, A. J. D. Silvestre, C. P. Neto, and C. S. R. Freire, “Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue,” Biomass and Bioenergy, vol. 55, pp. 205–211, 2013.

K. Vijeandran and T. A. V. Thanh, “Synthesis of vegan leather using plant-based substrates: A preliminary study,” Defect Diffus. Forum, vol. 411, pp. 57–66, 2021.

F. A. Ngwabebhoh and U. Yildiz, “Nature‐derived fibrous nanomaterial toward biomedicine and environmental remediation: Today’s state and future prospects,” J. Appl. Polym. Sci., vol. 136, no. 35, p. 47878, 2019.

A. F. de S. Costa, J. D. P. de Amorim, F. C. G. Almeida, I. D. de Lima, S. C. de Paiva, M. A. V. Rocha, G. M. Vinhas, and L. A. Sarubbo, “Dyeing of bacterial cellulose films using plant-based natural dyes,” Int. J. Biol. Macromol., vol. 121, pp. 580–587, 2019.

Badan Pusat Statistik, “Data Ekspor Impor HS 2 Digit November 2022,” Indonesia, 2023.

C. J. G. da S. Junior, J. D. P. de Amorim, A. D. M. de Medeiros, A. K. L. de H. Cavalcanti, H. A. do Nascimento, M. A. Henrique, L. J. C. do N. Maranhão, G. M. Vinhas, K. K. de O. S. Silva, A. F. de S. Costa, and L. A. Sarubbo, “Design of a naturally dyed and waterproof biotechnological leather from reconstituted cellulose,” J. Funct. Biomater., vol. 13, no. 2, p. 49, 2022.

P. Cazón, G. Velazquez, and M. Vázquez, “Characterization of mechanical and barrier properties of bacterial cellulose, glycerol and polyvinyl alcohol (PVOH) composite films with eco-friendly UV-protective properties,” Food Hydrocoll., vol. 99, 2020.

I. Cielecka, M. Szustak, H. Kalinowska, E. Gendaszewska-Darmach, M. Ryngajłło, W. Maniukiewicz, and S. Bielecki, “Glycerol-plasticized bacterial nanocellulose-based composites with enhanced flexibility and liquid sorption capacity,” Cellulose, vol. 26, no. 9, pp. 5409–5426, 2019.

N. Chiaoprakobkij, S. Seetabhawang, N. Sanchavanakit, and M. Phisalaphong, “Fabrication and characterization of novel bacterial cellulose/alginate/gelatin biocomposite film,” J. Biomater. Sci. Polym. Ed., vol. 30, no. 11, pp. 961–982, 2019.

M. Fernandes, A. P. Souto, M. Gama, and F. Dourado, “Bacterial cellulose and emulsified AESO biocomposites as an ecological alternative to leather,” Nanomaterials, vol. 9, no. 12, 2019.

H. Kim, J. E. Song, and H. R. Kim, “Comparative study on the physical entrapment of soy and mushroom proteins on the durability of bacterial cellulose bio‐leather,” Cellulose, vol. 28, no. 5, pp. 3183–3200, 2021.

L. P. dos S. B. de Sousa, P. M. S. C. M. Leite, A. A. Vieira, A. C. Faria, and L. Vieira, “Effect of water and alkali on purification bacterial cellulose membrane from Kombucha,” Res. Soc. Dev., vol. 10, no. 15, p. e526101523267, 2021.

R. Laurenti, M. Redwood, R. Puig, and B. Frostell, “Measuring the environmental footprint of leather processing technologies,” J. Ind. Ecol., vol. 21, no. 5, pp. 1180–1187, 2017.

D. R. Ruka, G. P. Simon, and K. M. Dean, “In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate,” Carbohydr. Polym., vol. 92, no. 2, pp. 1717–1723, 2013.

Z. Ye, H. Lu, G. Chai, C. Wu, J. Chen, and L. Lv, “Glycerol‐modified poly(vinyl alcohol)/poly(ethylene glycol) self‐healing hydrogel for artificial cartilage,” Polym. Int., vol. 72, no. 1, pp. 27–38, 2023.

S. V. Nguyen and B.-K. Lee, “Microfibrillated cellulose film with enhanced mechanical and water-resistant properties by glycerol and hot-pressing treatment,” Cellulose, vol. 28, no. 9, pp. 5693–5705, 2021.

S. J. Park and M. K. Seo, “Solid-solid interfaces,” Interface Sci. Technol., vol. 18, pp. 253–331, 2011.

E. Rohaeti, E. F. W. Laksono X, and A. Rakhmawati, “Characterization and the activity of bacterial cellulose prepared from rice waste water by addition with glycerol and chitosan,” ARPN J. Agric. Biol. Sci., vol. 12, no. 8, p. 2017.

A. Basu, S. V. Vadanan, and S. Lim, “A novel platform for evaluating the environmental impacts on bacterial cellulose production,” Scientific Report, 2018.

S. Barshan, M. Rezazadeh-Bari, H. Almasi, and S. Amiri, “Optimization and characterization of bacterial cellulose produced by komagatacibacter xylinus PTCC 1734 using vinasse as a cheap cultivation medium,” Int. J. Biol. Macromol., vol. 136, pp. 1188–1195, 2019.

M. Ghozali, Y. Meliana, and M. Chalid, “Synthesis and characterization of bacterial cellulose by Acetobacter xylinum using liquid tapioca waste,” in Materials Today: Proceedings, 2021, pp. 2131–2134.

B. Surma-Ślusarska, S. Presler, and D. Danielewicz, “Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking,” FIBRES & TEXTILES in Eastern Europe, vol. 16, no. 4, pp. 108-111, 2008.

N. R. Nurjannah, T. Sudiarti, and L. Rahmidar, “Sintesis dan karakterisasi selulosa termetilasi sebagai biokomposit hidrogel,” al-Kimiya, vol. 7, no. 1, pp. 19–27, 2020.

G. Pacheco, C. V. de Mello, B. G. Chiari-Andreo, V. L. B. Isaac, S. J. L. Ribeiro, E. Pecoraro, and E. Trovatti, “Bacterial cellulose skin masks-properties and sensory tests,” J. Cosmet. Dermatol., vol. 17, no. 5, pp. 840–847, 2018.

R. Drozd, M. Szymańska, K. Przygrodzka, J. Hoppe, G. Leniec, and U. Kowalska, “The simple method of preparation of highly carboxylated bacterial cellulose with Ni- and Mg-Ferrite-based versatile magnetic carrier for enzyme immobilization,” Int. J. Mol. Sci., vol. 22, no. 16, p. 8563, 2021.

Published

2024-03-23