Pengaruh Konsentrasi Methylene Blue dan NaClO pada Proses Degradasi Photocatalytic Fuel Cell Menggunakan Elektroda Cu-TiO2/ZnO
DOI:
https://doi.org/10.32734/jtk.v14i2.20525Keywords:
degradation, methylene blue, NaClO, photocatalytic, semiconductorAbstract
The contamination of synthetic dyes such as methylene blue has become a serious issue in textile industry wastewater due to its resistance to natural degradation. Photocatalytic Fuel Cell (PFC) technology is an effective and environmentally friendly method for degrading toxic dyes in wastewater. In this study, a dual-chamber PFC was developed using a photoanode composed of a Cu-TiO₂/ZnO semiconductor composite synthesized via the sol-gel method. The objective was to develop an efficient composite electrode and evaluate the effect of methylene blue and sodium hypochlorite (NaClO) concentrations on degradation efficiency. The composite was prepared with 5 wt% Cu, calcined at 200 °C, and deposited onto a glass substrate. Characterization using Scanning Electron Microscopy (SEM) revealed that the resulting nanoparticles exhibited a spherical morphology with diameters ranging from 0.22 µm to 4.33 µm. UV-Vis Diffuse Reflectance Spectroscopy (DRS) analysis showed that the band gap energy decreased from 3.18 eV (TiO₂/ZnO) to 2.29 eV after Cu doping. The experimental results demonstrated that the addition of NaClO enhanced the photocatalytic activity of the Cu-TiO₂/ZnO composite for methylene blue degradation, achieving an optimal degradation rate of 78% after 120 minutes of operation.
Downloads
References
H. Masoumbeigi dan A. Rezaee, “Removal of Methylene Blue (MB) dye from synthetic wastewater using UV/H2O2 advanced oxidation process,” Journal of Health Policy and Sustainable Health, vol. 2, no. 1, 2015.
P. Faber, A. Ronald, dan B. W. Millar, “Methylthioninium chloride: pharmacology and clinical applications with special emphasis on nitric oxide mediated vasodilatory shock during cardiopulmonary bypass,” Juni 2005.
M. Ikram dkk., “Biodegradation of azo dye methyl red by pseudomonas aeruginosa: optimization of process conditions,” Int J Environ Res Public Health, vol. 19, no. 16, Agu 2022.
M. A. Mahmoud, A. Poncheri, Y. Badr, M. G. Abd, dan E. Wahed, “Photocatalytic degradation of methyl red dye.”
G. Derouich, S. Alami Younssi, J. Bennazha, J. A. Cody, M. Ouammou, dan M. El Rhazi, “Development of low-cost polypyrrole/sintered pozzolan ultrafiltration membrane and its highly efficient performance for congo red dye removal,” J Environ Chem Eng, vol. 8, no. 3, Jun 2020.
K. Saini dkk., “Effective utilization of discarded reverse osmosis post-carbon for adsorption of dyes from wastewater,” Environ Res, vol. 231, Agu 2023.
R. Jamee dan R. Siddique, “Biodegradation of synthetic dyes of textile effluent by microorganisms: An environmentally and economically sustainable approach,” Eur J Microbiol Immunol (Bp), vol. 9, no. 4, hlm. 114–118, Des 2019.
K. Sharma, S. Pandit, A. S. Mathuriya, P. K. Gupta, K. Pant, dan D. A. Jadhav, “Microbial electrochemical treatment of methyl red dye degradation using Co-culture method,” Water (Switzerland), vol. 15, no. 1, Jan 2023.
M. W. Kee, S. M. Lam, J. C. Sin, H. Zeng, dan A. R. Mohamed, “Explicating charge transfer dynamics in anodic TiO2/ZnO/Zn photocatalytic fuel cell for ameliorated palm oil mill effluent treatment and synchronized energy generation,” J Photochem Photobiol A Chem, vol. 391, Mar 2020.
A. C. K. anak Niang, J. C. Liu, dan M. G. Tay, “Electrochemical deposition (ECD) of ZnO as the photoanode in dual-chamber photocatalytic fuel cell (PFC) for methyl red degradation,” Adv Mater Interfaces, vol. 10, no. 12, Apr 2023.
T. Marimuthu, N. Anandhan, R. Thangamuthu, dan S. Surya, “Facile growth of ZnO nanowire arrays and nanoneedle arrays with flower structure on ZnO-TiO2 seed layer for DSSC applications,” J Alloys Compd, vol. 693, 2017.
A. K. Brave, S. M. Gadegone, M. R. Lanjewar, dan R. B. Lanjewar, “Synthesis of ZnO nanomaterial by precipitation method and its characterization,” International Journal of Chemical and Physical Sciences, vol. 4, 2015.
S. Aroob dkk., “Green synthesis and photocatalytic dye degradation activity of CuO nanoparticles,” Catalysts, vol. 13, no. 3, 2023.
T. Marimuthu, N. Anandhan, R. Thangamuthu, dan S. Surya, “Facile growth of ZnO nanowire arrays and nanoneedle arrays with flower structure on ZnO-TiO2seed layer for DSSC applications,” J Alloys Compd, vol. 693, 2017, doi: 10.1016/j.jallcom.2016.09.260.
A. K. Brave, S. M. Gadegone, M. R. Lanjewar, dan R. B. Lanjewar, “Synthesis of ZnO Nanomaterial by Precipitation Method and its Characterization,” International Journal of Chemical and Physical Sciences, vol. 4, 2015.
S. Aroob dkk., “Green Synthesis and Photocatalytic Dye Degradation Activity of CuO Nanoparticles,” Catalysts, vol. 13, no. 3, 2023, doi: 10.3390/catal13030502.
H. Ahmad Rafaie, N. F. Mohd Yusop, N. F. Azmi, N. S. Abdullah, dan N. I. T. Ramli, “Photocatalytic degradation of methylene blue dye solution using different amount of ZnO as a photocatalyst,” Science Letters, vol. 15, no. 1, hlm. 1, Jan 2021.
A. C. K. anak Niang, J. C. Liu, dan M. G. Tay, “Electrochemical deposition (ECD) of ZnO as the photoanode in dual-chamber photocatalytic fuel cell (PFC) for methyl red degradation,” Adv Mater Interfaces, vol. 10, no. 12, Apr 2023.
N. S. A. Moksin, Y. P. Ong, L. N. Ho, dan M. G. Tay, “Optimization of photocatalytic fuel cells (PFCs) in the treatment of diluted palm oil mill effluent (POME),” Journal of Water Process Engineering, vol. 40, Apr 2021.
S. M. Lam, J. K. Ooi, M. W. Kee, dan J. C. Sin, “Photocatalytic fuel cell using tio2/zno/zn photoanode for greywater and bacteria abatements with power generation concomitantly,” dalam Key Engineering Materials, 2019.
A. Adamu, M. Isaacs, K. Boodhoo, dan F. R. Abegão, “Investigation of Cu/TiO2 synthesis methods and conditions for CO2 photocatalytic reduction via conversion of bicarbonate/carbonate to formate,” Journal of CO2 Utilization, vol. 70, Apr 2023.
N. Sondezi, Z. Njengele-Tetyana, K. P. Matabola, dan T. A. Makhetha, “Sol-gel-derived TiO2 and TiO2/Cu nanoparticles: synthesis, characterization, and antibacterial efficacy,” ACS Omega, vol. 9, no. 14, hlm. 15959–15970, Apr 2024.
Nasikhudin, M. Diantoro, A. Kusumaatmaja, dan K. Triyana, “Study on photocatalytic properties of TiO2 nanoparticle in various pH condition,” dalam Journal of Physics: Conference Series, 2018.
R. Nankya dan K. N. Kim, “Sol-gel synthesis and characterization of Cu-TiO2 nanoparticles with enhanced optical and photocatalytic properties,” J Nanosci Nanotechnol, vol. 16, no. 11, 2016.
T. M. Abdel-Fattah, A. Wixtrom, K. Zhang, W. Cao, dan H. Baumgart, “Highly uniform self-assembled gold nanoparticles over high surface Area ZnO nanorods as catalysts,” ECS Journal of Solid State Science and Technology, vol. 3, no. 10, 2014.
M. Sahu dan P. Biswas, “Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor,” Nanoscale Res Lett, vol. 6, 2011.
L. Li dkk., “Surface doping for photocatalytic purposes: relations between particle size, surface modifications, and photoactivity of SnO2:Zn 2+ nanocrystals,” Nanotechnology, vol. 20, no. 15, 2009.
H. Li, W. Tu, Y. Zhou, dan Z. Zou, “Z-scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges,” 2016.
V. K. Landge, C. M. Huang, V. S. Hakke, S. H. Sonawane, S. Manickam, dan M. C. Hsieh, “Solar energy driven Cu-ZnO/TiO2 nanocomposite photocatalyst for the rapid degradation of congo red azo dye,” Catalysts, vol. 12, no. 6, 2022.
A. Steyermark, “Book review: kirk-othmer encyclopedia of chemical technology,” Microchemical Journal, vol. 29, no. 2, 1984.
Iin S, “Konversi nanoselulosa menjadi gula alkohol dari limbah kulit pisang kepok (Musa paradisiaca L.) menggunakan nanokomposit Nife2O4/nGO diradiasi dibawah sinar UV,” 2023.
S. K. Kansal, M. Singh, dan D. Sud, “Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts,” J Hazard Mater, vol. 141, no. 3, 2007.
S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, dan V. Murugesan, “Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2,” Solar Energy Materials and Solar Cells, vol. 77, no. 1, 2003.
R. L. Vifta, Sutarno, dan Suyanta, “Studi aktifitas fotokatalik MCM-41 teremban Zn pada zat warna metilen biru,” Jurnal MIPA, vol. 39, no. 1, 2016.
R. S. Mukkavilli dkk., “Electrocatalytic activity, phase kinetics, spectroscopic advancements, and photocorrosion behaviour in tantalum nitride phases,” 1 Oktober 2024, Elsevier Ltd.
P. Li dkk., “Approaches for enhancing wastewater treatment of photocatalytic fuel cells: a review,” 1 Mei 2024, Multidisciplinary Digital Publishing Institute (MDPI).
S. L. Lee dkk., “Exploring the relationship between molecular structure of dyes and light sources for photodegradation and electricity generation in photocatalytic fuel cell,” Chemosphere, vol. 209, 2018.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Teknik Kimia USU

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.