Studi Model Isoterm Adsorpsi Kristal Violet oleh Biosorben Kulit Ubi Kayu (Manihot esculenta)

Authors

  • Muhammad Dafin Ramadhan Universitas Sumatera Utara
  • Iriany Universitas Sumatera Utara
  • Erni Misran Universitas Sumatera Utara
  • Muhammad Turmuzi Universitas Sumatera Utara

DOI:

https://doi.org/10.32734/jtk.v10i1.5485

Keywords:

crystal violet, cassava peel, adsorption isotherm, removal efficiency

Abstract

Crystal violet is a dye that has many uses, but its waste can be harmful to humans and the environment. Adsorption is the most useful method for removing crystal violet waste compared to other separation methods because of its efficiency and viability. Cassava peel is a material that has potential to be an adsorbent. Cassava peel is suitable as an adsorbent because of its high cellulose, hemicellulose, and lignin content. In carrying out adsorption, getting the most appropriate isotherm model is important for predicting the adsorption parameters and the adsorbent system. This study aims to obtain an adsorption isotherm model that is the most suitable for the adsorption of crystal violet by cassava peel biosorbent with high accuracy and to obtain a combined model of the adsorption isotherm model that is the most suitable with the mass balance equation to predict removal efficiency. This research was conducted using secondary data using MATLAB as a supporting tool to perform a non-linear regression and Newton-Raphson iteration. In this research, we conclude that Sips model is the most suitable model with qms = 374,3 mg/g and 0,5933 site heterogeneity. For predict adsorbent mass ratio: adsorbate volume minimum ratio but removal efficiency stay at ≥ 90%, we obtain a correlation factor: m/V = -1.10-11Co4 + 2.10-8Co3 – 2.10-5Co2 + 0.015Co + 1.2686.

Downloads

Download data is not yet available.

References

L. Akinola and A. Umar, “Adsorption of crystal violet onto adsorbents derived from agricultural wastes: Kinetic and equilibrium studies,” J. Appl. Sci. Environ. Manag., vol. 19, no. 2, pp. 279–288, 2015.

G. K. Cheruiyot, W. C. Wanyonyi, J. J. Kiplimo, and E. N. Maina, “Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study,” Sci. African, vol. 5, pp. 1–11, 2019.

H. Patel and R. T. Vashi, “Adsorption of crystal violet dye onto tamarind seed powder,” E-Journal Chem., vol. 7, no. 3, pp. 975–984, 2010.

P. C. Bhomick, A. Supong, M. Baruah, C. Pongener, and D. Sinha, “Pine Cone biomass as an efficient precursor for the synthesis of activated biocarbon for adsorption of anionic dye from aqueous solution: Isotherm, kinetic, thermodynamic and regeneration studies,” Sustain. Chem. Pharm., vol. 10, no. June, pp. 41–49, 2018.

P. S. Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, and S. Sivanesan, “Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions,” Desalination, vol. 261, no. 1–2, pp. 52–60.

B. H. Beakou, K. El Hassani, M. A. Houssaini, M. Belbahloul, E. Oukani, and A. Anouar, “Novel activated carbon from Manihot esculenta Crantz for removal of methylene blue,” Sustain. Environ. Res., vol. 27, no. 5, pp. 215–222, 2017.

D. R. Santoso, “Pemanfaatan kulit singkong sebagai bahan baku arang aktif dengan variasi konsentrasi NaOH dan suhu,” Skripsi, Universitas Medan Area, 2016.

M. Dahiru, Z. U. Zango, and M. A. Haruna, “Cationic dyes removal using low-cost banana peel biosorbent,” Am. J. Mater. Sci., vol. 8, no. 2, pp. 32–38, 2018.

Ariyani, A. R. Putri, R. P. Eka, and R. Fathoni, “Pemanfaatan kulit singkong sebagai bahan baku arang aktif dengan variasi konsentrasi NaOH dan suhu,” Konversi, vol. 6, no. 1, p. 7, 2017.

A. N. Kosasih, J. Febrianto, J. Sunarso, Y. H. Ju, N. Indraswati, and S. Ismadji, “Sequestering of Cu(II) from aqueous solution using cassava peel (Manihot esculenta),” J. Hazard. Mater., vol. 180, no. 1–3, pp. 366–374, 2010.

A. J. Rubio et al., “Removal of methylene blue using cassava bark residue,” Chem. Eng. Trans., vol. 65, pp. 751–756, 2018.

M. A. Al-Ghouti and D. A. Da’ana, “Guidelines for the use and interpretation of adsorption isotherm models: A review,” J. Hazard. Mater., vol. 393, no. February, pp. 1–22, 2020.

R. Saadi, Z. Saadi, R. Fazaeli, and N. E. Fard, “Monolayer and multilayer adsorption isotherm models for sorption from aqueous media,” Korean J. Chem. Eng., vol. 32, no. 5, pp. 787–799, 2015.

J. Wang and X. Guo, “Adsorption isotherm models: Classification, physical meaning, application and solving method,” Chemosphere, vol. 258, p. 127279, 2020.

S. Aini and S. Supratikno, “Penerapan lima model kesetimbangan adsorpsi isoterm pada adsorpsi ion logam Chrom VI oleh zeolit,” Eksergi, vol. 15, no. 2, p. 48, 2018.

S. A. A. Harahap et al., “Isothermal approach to predict the removal efficiency of β-carotene adsorption from CPO using activated carbon produced from tea waste,” IOP Conf. Ser. Mater. Sci. Eng., vol. 309, no. 1, 2018.

A. Mannarswamy, S. H. Munson-mcgee, R. Steiner, and P. K. Andersen, “Chemometrics and intelligent laboratory systems D-optimal experimental designs for Freundlich and Langmuir adsorption isotherms,” Chemom. Intell. Lab. Syst., vol. 97, no. 2, pp. 146–151, 2009.

C. J. Geankoplis, Transport Processes and Separation Process Principle, 3rd ed. New Jersey: Prentice Hall International, Inc., 2003.

W. Al Arfi, “Kajian kemampuan adsorpsi logam berat kadmium (Cd+2) dan tembaga (Cu+2) serta kompetisi larutan biner dengan menggunakan adsorben dari batang jagung (Zea mays.),” Skripsi, Universitas Sumatera Utara, 2017.

W. L. McCabe, C. Smith, and P. Harriott, Unit Operations of Chemical Engineering, 7th ed. New York: McGraw-Hill, Inc., 2005.

M. A. Al-Ghouti and M. M. Razavi, “Water reuse: Brackish water desalination using Prosopis juliflora,” Environ. Technol. Innov., vol. 17, pp. 1–16, 2020.

H. Irawati, N. H. Aprilita, and E. Sugiharto, “Adsorpsi Zat warna kristal violet menggunakan limbah kulit singkong (Manihot esculenta),” Berkala MIPA, vol. 25, no. 1, pp. 17–31, 2018.

M. Mazarji, B. Aminzadeh, M. Baghdadi, and A. Bhatnagar, “Removal of nitrate from aqueous solution using modified granular activated carbon,” J. Mol. Liq., vol. 233, pp. 139–148, 2017.

M. R. Samarghandi, M. Hadi, S. Moayedi, and F. B. Askari, “Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon,” Iran. J. Environ. Heal. Sci. Eng., vol. 6, no. 4, pp. 285–294, 2009.

J. M. Smith, H. C. V. Ness, M. M. Abbott, and M. T. Swihart, Introduction to Chemical Engineering Thermodynamics, 8th ed. New Jersey: McGraw-Hill Education, Inc., 2018.

J. D. Seader, Separation Process Principles, 1st ed. New Jersey: John Wiley & Sons, Inc., 2006.

O. Keskinkan, “Isotherm models for predicting the dye adsorption potential of coon tail (Ceratophyllum demersun) and water milfoil (Myriophyllum spicatum),” Adsorpt. Sci. Technol., vol. 24, no. 4, pp. 321–336, 2006.

F. Deniz and R. A. Kepekci, “Dye biosorption onto pistachio by-product: A green environmental engineering approach,” J. Mol. Liq., vol. 219, pp. 194–200, 2016.

Published

2021-03-25