Biosintesis dan Karakterisasi Nanopartikel Seng Oksida (ZnO-NPs) Menggunakan Ekstrak Daun Kenitu (Chrysophyllum cainito L.)

Authors

  • Fawaid Syamsul Arifin Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Malang
  • Nazriati Universitas Negeri Malang

DOI:

https://doi.org/10.32734/jtk.v11i2.9127

Keywords:

biosynthesis, kenitu leaf, zinc oxide nanoparticles

Abstract

Nanoparticles are materials that have superior properties compared to similar materials that are larger in size when used as raw materials. One of the nanoparticles that is trending and has many applications is zinc oxide nanoparticles (ZnO-NPs). This study aimed to synthesize ZnO-NPs using kenitu leaf extract (Chrysophyllum cainito L.) and determine the effect of extract composition and pH on the size of ZnO-NPs. Kenitu leaf extract can prevent agglomeration in the synthesis of nanoparticles because it contains secondary metabolites such as antioxidants and polyphenols. ZnO-NPs were synthesized using green method by reacting kenitu leaf extract with zinc sulfate. The success of the synthesis was indicated by the similarity of the peaks of the synthesized compounds to the standard peaks of ZnO in X-Ray Diffraction (XRD) analysis and supported by the presence of Zn-O vibrations in the 405-768 cm-1 region in Fourier Transform Infra-Red (FTIR) analysis. Analysis of UV-Vis spectra showed that ZnO-NPs were relatively stable at wavelength of 308-330 nm with an absorption peak at 317 nm and a bandgap energy of 3.25 eV. The results of FTIR characterization showed the presence of vibrations of the carbonyl and hydroxy groups in kenitu leaf extract. The results of the Scanning Electron Microscope (SEM)  characterization showed that the ZnO-NPs synthesized using 10 mL kenitu leaf extract at pH 7 with 0.15 M zinc sulfate had predominantly spherical shape with a size of 14.10 nm. Based on experiment result addition of kenitu leaf extract may reduce the size of ZnO-NPs, while increase of mixture pH during formation reaction of ZnO-NPs may increase the size of ZnO-NPs.

Downloads

Download data is not yet available.

References

Y. Y. Chan, Y. L. Pang, S. Lim, and W. C. Chong, “Facile green synthesis of ZnO nanoparticles using natural-based materials: properties, mechanism, surface modification and application,” J. Environ. Chem. Eng., vol. 9, no. 4, pp. 105417, 2021.

S. K. Chaudhuri and L. Malodia, “Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: Characterization and its evaluation on tree seedling growth in nursery stage,” Applied Nanoscience. vol.7, pp. 501-512, 2017.

R. Hajinasiri, B. Norozi, and H. Ebrahimzadeh, “Biosynthesis of ZnO nanoparticles using corn silk of Zea Mays L. extract,” Chem. Lett., vol. 45, no. 11, pp. 1238–1240, 2016.

R. L. Kalyani, P. P. N. Vijaykumar, S. V. N. Pammi, “Biosynthesis of silver nanoparticles using Annona squamosa leaf extract with synergistic antibacterial activity,” Indian J. vol. 81, no. 6, pp. 1036-1044, 2019.

S. Yedurkar, C. Maurya, and P. Mahanwar, “Biosynthesis of zinc oxide nanoparticles using Ixora coccinea leaf extract—A green approach,” Open J. Synth. Theory Appl., vol. 5, pp. 1–14, 2016.

M. Bandeira, M. Giovanela, M. Roesch-Ely, D. M. Devine, and J. da S. Crespo, “Green synthesis of zinc oxide nanoparticles: A Review of the synthesis methodology and mechanism of formation,” Sustain. Chem. Pharm., vol. 15, pp. 1–10, 2020.

S. K. Chaudhuri and L. Malodia, “Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: Characterization and its evaluation on tree seedling growth in nursery stage,” Appl. Nanosci., vol. 7, no. 8, pp. 501–512, 2017.

M. N. Alharthi, I. Ismail, S. Bellucci, N. H. Khdary, and M. A. Salam, “Biosynthesis microwave-assisted of zinc oxide nanoparticles with Ziziphus jujuba leaves extract: Characterization and photocatalytic Application,” Nanomaterials, vol. 11, pp. 1628–1644, 2021.

T. Karnan and S. A. S. Selvakumar, “Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) Peel extract and their photocatalytic activity on methyl orange dye,” J. Mol. Struct., vol. 1125, pp. 358–365, 2016.

P. C. Nagajyothi, T. N. M. An, T. V. M. Sreekanth, J. Lee, D. J. Lee, and K. D. Lee, “Green route biosynthesis: Characterization and catalytic activity of ZnO nanoparticles,” Mater. Lett., vol. 108, pp. 160–163, 2013.

I. Y. Ningsih, S. Zulaikhah, M. A. Hidayat, and B. Kuswandi, “Antioxidant Activity of various kenitu (Chrysophyllum Cainito L.) leaves extracts from Jember, Indonesia,” Agric. Agric. Sci. Procedia, vol. 9, pp. 378–385, 2016.

Y. Gao, D. XU, D. Ren, K. Zeng, and X. Wu, “Green synthesis of zinc oxide nanoparticles using Citrus sinensis peel extract and application to strawberry preservation: A comparison study,” LWT, vol. 126, p. 109297, 2020.

R. Yuvakkumar, J. Suresh, A. J. Nathanael, M. Sundrarajan, and S. I. Hong, “Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications,” Mater. Sci. Eng. C, vol. 41, pp. 17–27, 2014.

A. J. Lagbas, J. B. Pelisco, and V. M. P. Riego, “Antibacterial activity of silver nano/microparticles in chitosan matrix prepared using Mangifera indica and Chrysophyllum cainito leaf extracts and its application in pineapple (Ananas comosus) polyester fabric,” Indian J. Adv. Chem. Sci., vol. 4, no. 1, pp. 7–13, 2016.

R. Majumdar, S. Tantayanon, and B. G. Bag, “Synthesis of palladium nanoparticles with leaf extract of Chrysophyllum cainito (star apple) and their applications as efficient catalyst for C–C coupling and reduction reactions,” Int. Nano Lett., vol. 7, no. 4, pp. 267–274, 2017.

P. E. Ochieng, E. Iwuoha, I. Michira, M. Masikini, J. Ondiek, P. Githira and G. N. Kamau, “Green route synthesis and characterization of zno nanoparticles using Spathodea campanulata,” Int. J. Biochem., vol. 23, pp. 53–61, 2015.

B. Ma’arif, A. Aditama, R. Muti, W. Sidha Bhagawan, and R. Amiruddin, “Metabolite profile of Chrysophyllum cainito L. leaves extract with solvent variation using UPLC-QTOF-MS/MS,” J. Tumbuh. Obat Indones., vol. 12, no. 1, pp. 10–24, 2019.

N. Koffi, K. . Amoikon, M. . Tiebre, B. Kadja, and G. . Zirihi, “Effect of aqueous extract of Chrysophyllum cainito leaves on the glycaemia of diabetic rabbits,” Pharm. Pharmacol, vol. 3, no. 10, pp. 501–506, 2009.

A. Roni, L. Fitriani, and L. Marliani, “Penetapan kadar total flavonoid, fenolat, dan karotenoid, serta uji aktivitas antioksidan dari daun dan kulit batang tanaman kenitu (Chrysophyllum cainito L.),” J. Sains dan Kesehat., vol. 2, no. 2, pp. 83–88, 2019.

S. Shailajan and D. Gurjar, “Pharmacognostic and phytochemical evaluation of Chrysophyllum cainito Linn. Leaves,” Int. J. Pharm. Sci. Rev. Res., vol. 26, no. 1, pp. 106–111, 2014.

T. Bhuyan, K. Mishra, M. Khanuja, and R. Prasad, “Biosynthesis of Zinc Oxide nanoparticles from Azadirachta Indica for antibacterial and photocatalytic applications,” Mater. Sci. Semicond. Process., vol. 32, pp. 55–61, 2015.

S. Zulaikhah, “Uji aktivitas antioksidan, polifenol, dan flavonoid ekstrak air, aseton, etanol beberapa varian daun kenitu (Chrysophyllum Cainito L.) dari daerah jember,” Skripsi, Universitas Jember: Jember, 2015.

A. K. Singh, P. Pal, V. Gupta, T. P. Yadav, V. Gupta, and S. P. Singh, “Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba,” Mater. Chem. Phys., vol. 203, pp. 40–48, 2018.

J Tournebize, A. Boudier, O. Joubert, H. Eidi, G. Bartosz, P. Maincent, P. Leroy and A. Sapin-Minet, “Impact of gold nanoparticle coating on redox homeostasis,” Int. J. Pharm., vol. 438, pp. 107–116, 2012.

W. L. White and P. Wilson, Chapter 2 - World Seaweed Utilization,” in Brijesh K. Tiwari and D. J. Troy, Seaweed Sustainability: Food and Non-Food Applications, San Diego: Academic Press, 2015, pp. 7–25.

Y. Wu, A. Tok, F. Boey, X. Zeng, and X. Zhang, “Surface modification of ZnO nanocrystals,” J. Appl. Surf. Sci., vol. 253, pp. 5473–5479, 2007.

N. M. Puspawati, I. N. Simpen, and S. N. Miwada, “Isolasi gelatin dari kulit kaki ayam broiler dan karakterisasi gugus fungsinya dengan spektrofotometri FTIR,” J. Kim., vol. 6, no. 1, pp. 79–87, 2012.

S. Chadijah, M. Baharuddin, and F. Firnanelty, “Potensi instrumen FTIR dan GC-MS dalam mengkarakterisasi dan membedakan gelatin lemak ayam, itik dan babi,” Al-Kimia, vol. 7, no. 2, pp. 126–135, Dec. 2019.

C. E. Dhurhania and A. Novianto, “Uji kandungan fenolik total dan pengaruhnya terhadap aktivitas antioksidan dari berbagai bentuk sediaan sarang semut (Myrmecodia pendens),” J. Farm. dan Ilmu Kefarmasian Indones., vol. 5, no. 2, pp. 62–68, 2018.

Y. Abdallah, M. Liu, S. O. Ogunyemi, T. Ahmed, H. Fouad, A. Abdelazez, C. Yan, Y. Yang, J. Chen, and B. Li “Bioinspired green synthesis of chitosan and zinc oxide nanoparticles with strong antibacterial activity against rice pathogen Xanthomonas oryzae pv. oryzae,” Molecules, vol. 25, no. 20, pp. 4795–4812, 2020.

K. Davis, R. Yarbrough, M. Froeschle, J. White, and H. Rathnayake, “Bandgap engineered zinc oxide nanostructures via a sol-gel synthesis of solvent driven shape-controlled crystal growth,” RSC Adv., vol. 9, no. 26, pp. 14638–14648, 2019.

K. P. Putra and P. Priyono, “Kajian sifat struktur kristal pada bahan barium heksaferit yang ditambah variasi Fe2O3 menggunakan analisis rietveld,” Youngster Phys. J., vol. 4, no. 2, pp. 164–172, Apr. 2015.

Published

2022-09-25