The Cluster Analysis of Online Shop Product Reviews Using K-Means Clustering

Authors

  • Rena Nainggolan Universitas Methodist Indonesia, Medan, Indonesia
  • Eviyanti Purba Universitas Methodist Indonesia, Medan, Indonesia

DOI:

https://doi.org/10.32734/jocai.v4.i2-2855

Keywords:

Data Mining, K-Means, Clustering, Cluster, Online Customer Reviews

Abstract

Technological developments have made changes in people's lifestyles, namely changes in the behavior of people who had shopped directly or offline to online. Many benefits are obtained from shopping online, namely the many conveniences offered by shopping online, besides that there are also many disadvantages of shopping online, namely the many risks in using e-commerce facilities, namely the problem of product or service quality, safety in payments, fraud. This research aims to mine review data on one of the e-commerce sites which ultimately produces clusters using the K-Means Clustering algorithm that can help potential customers to make a decision before deciding to buy a product or service

Downloads

Download data is not yet available.

References

I. U. Yoviriska, and Wahjoedi. “Trend keputusan Belanja Online Mahasiswa Fakultas Ekonomi UM Angkatan 2014â€, Jurnal Pendidikan Ekonomi, vol.11, no. 1, Mar. 2018.

S. Sidharta, and B. Suzanto, “Pengaruh kepuasan transaksi online shopping dan kepercayaan konsumen terhadap sikap serta perilaku konsumen pada e-commerceâ€, Jurnal computech & Bisnis, vol. 9, pp. 23-26, no.1, Jun. 2018.

V. Carlo. Business Intelligence: Data Mining and Optimization for Decision Making, West Sussex, United Kingdom: John Wiley & Sons Ltd, 2009.

R. Nainggolan and E. Purba, “The Cluster Analysis of Online Shop Product Reviews Using K-Means Clusteringâ€, Data Science: J. of Computing and Appl. Informatics, vol. 4, no. 2, Jul. 2020.

Y. Ganjisaffar. (2013). Open Source Web Crawler for Java. [Online]. Accessed: 13 May 2017. Available: http://code.google.com/p/crawler4j/.

L. Kumar, and P. K. Bhatia, “Text Mining: Concepts, Process and Applicationsâ€, Journal of Global Research in Computer Science, vol. 4, pp. 36-39, 2013.

T. Mardiana , T. B. Adji, , and I. Hidayah, “Stemming Influence on Similarity Detection of Abstract Written in Indonesiaâ€, TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 14, no. 1, pp. 219-227, 2016.

F.Z. Tala, “A Study of stemming effects on information retrieval in Bahasa Indonesiaâ€, Master of Logic Project, Institute for Logic, Language and Computation, Univ. van Amsterdam, Netherlands, 2013.

M. Adriani, J. Asian, B. A. A. Nazief, S. M. M. Tahaghoghi, and H. E. Williams, “Stemming Indonesian: A confix-stripping approachâ€, ACM Transactions on Asian Language Information Processing, vol. 6, no. 4, pp. 1-33, 2007.

Published

2020-07-31

How to Cite

Nainggolan, R., & Eviyanti Purba. (2020). The Cluster Analysis of Online Shop Product Reviews Using K-Means Clustering. Data Science: Journal of Computing and Applied Informatics, 4(2), 111-121. https://doi.org/10.32734/jocai.v4.i2-2855