The RPUF Composite’s Physical and Mechanical Properties with Ramie Stem Particle Reinforcement

Authors

  • Rihab Stafian Nisa IPB University, Bogor, Indonesia
  • Dede Hermawan IPB University, Bogor, Indonesia
  • Sasa Sofyan Munawar National Research and Innovation Agency, Bogor, Indonesia
  • Deni Purnomo National Research and Innovation Agency, Bogor, Indonesia
  • Bambang Subiyanto National Research and Innovation Agency, Bogor, Indonesia
  • Ismadi National Research and Innovation Agency, Bogor, Indonesia
  • Ahmad Syahrir National Research and Innovation Agency, Bogor, Indonesia
  • Fazhar Akbar National Research and Innovation Agency, Bogor, Indonesia

DOI:

https://doi.org/10.32734/jsi.v7i01.10254

Keywords:

Composite, Isocyanate, Polyol, Ramie Stem, Rigid Polyurethane Foam

Abstract

Rigid polyurethane foam (RPUF) is a common insulation material that has low thermal conductivity and good mechanical properties. The qualities of RPUF may be enhanced by adding natural fiber reinforcing. The purpose of this work is to examine how the mechanical and physical characteristics of RPUF composite are affected by the amount of ramie stem particles present. Japanese Industrial Standard (JIS) A 5908-2003 is the basis for the mechanical test (modulus of elasticity, modulus of rupture, compressive strength, internal bond) and the physical test (density, moisture content, water absorption). The study's findings suggest that the physical properties of the RPUF composite were affected by the addition of ramie particles for reinforcement. The density increase in particle content 2.5% – 7.5% range, is not statistically significant. The MC and WA increased statistically significantly. The values of MOE and MOR were not significantly different. In fact, with the addition of 2.5% and 5% ramie particles, the compressive strength value was higher than the RPUF composite without ramie particle filler. Then overall, the IB value was increased by increasing the ramie particles in the RPUF composite. The addition of 2.5-5% ramie particles into the RPUF composite showed optimum results in mechanical properties. Thereby, the addition of ramie particles in the RPUF composite means reducing the use of polyurethane. Therefore, it can reduce production costs. Then the product is more environmentally friendly

Downloads

Download data is not yet available.

References

Statistics Center, Development of the Number of Motorized Vehicles by Type (Unit), 2018-2020. Jakarta (ID): Statistics Center, 2021.

M. C. Silva, J. A. Takahashi, D. Chaussy, M. N. Belgacem, and G. G. Silva, “Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites,” J. Appl. Polym. Sci., vol. 117, pp. 3665–3672, 2010, doi: 10.1002/app.32281.

K.Begum and M. A. Islam, “Natural Fiber as a substitute to Synthetic Fiber in Polymer Composites: A Review,” Res. J. Eng. Sci., vol. 2, no. 3, pp. 46–53, 2013.

S. M. Husainie, X. Deng, M. A. Ghalia, J. Robinson, and H. E. Naguib, “Natural fillers as reinforcement for closed-molded polyurethane foam plaques: Mechanical, morphological, and thermal properties,” Mater. Today Commun., vol. 27, no. October 2020, pp. 1–11, 2021, doi: 10.1016/j.mtcomm.2021.102187.

A. Helland, P. Wick, A. Koehler, K. Schmid, and C. Som, “Reviewing the environmental and human health knowledge base of carbon nanotubes,” Environ. Health Perspect., vol. 115, no. 8, pp. 1125–1131, 2007.

Y. Tao, P. Li, and L. Cai, “Fiber content in PU foam,” BioResources, vol. 11, no. 2, pp. 4159–4167, 2016.

A. M. Mosiewicki MA, Casado U, Marcovich NE, “Finite Strain 3D Thermoviscoelastic Constitutive Model,” Polym. Eng. Sci., vol. 49, pp. 684–692, 2009, doi: 10.1002/pen.21300.

L.-C. Chang, Improving the Mechanical Performance of Wood Fiber Reinforced Bio-based Polyurethane Foam. Toronto(CA): University of Toronto., 2014.

N. S. Mohd Soberi, R. Rahman, and F. Zainuddin, “Effect of kenaf fiber on morphology and mechanical properties of rigid polyurethane foam composite,” Mater. Sci. Forum, vol. 888 MSF, no. April, pp. 188–192, 2017, doi: 10.4028/www.scientific.net/MSF.888.188.

Japanese Association Standard, JIS A 5908 : Particle Board. Japan, 2003.

S. H. Kim, H. C. Park, H. M. Jeong, and B. K. Kim, “Glass fiber reinforced rigid polyurethane foams,” J. Mater. Sci., vol. 45, no. 10, pp. 2675–2680, 2010, doi: 10.1007/s10853-010-4248-3.

B. S. Sridhar, A. R. Shashikala, And P. K. Vishnu, “Effect of alkaline process and mass fraction on morphology, bending strength and sound absorption coefficient of polyurethane/coir fiber composites in muffler components,” PalArch's Journal of Archeology of Egypt, vol. 17, no. 9, pp. 5588–5604, 2020.

Y. Sultoni, Effect of alkaline process and mass fraction on morphology, bending strength and sound absorption coefficient of polyurethane/coir fiber composites in Muffler components, Surabaya (ID): Sepuluh Nopember Institute of Technology, 2016.

E. Rosamah, M. S. Hossain, H. P. S. A. Khalil, W. O. W. Nadirah, R. Dungani, A. S. N. Amiranajwa, N. L. M. Suraya, H. M. Fizree, and A. K. M. Omar, “Properties enhancement using oil palm shell nanoparticles of fibers reinforced polyester hybrid composites,” Adv. Compos. Mater., vol. 26, no. 3, pp. 259–272, 2017, doi: 10.1080/09243046.2016.1145875.

H. Bradai, A. Koubaa, H. Bouafif, A. Langlois, and B. Samet, “Synthesis and Characterization of Wood Rigid Polyurethane Composites,” vol. 15, no. 4316, pp. 1–20, 2022, doi: 10.3390/ ma15124316.

N. V. David and M. Azlan, “Moisture Absorption Properties and Shock Cushioning Characteristics of Bio-Based Polyurethane Foam Composites,” vol. 5, no. 2, pp. 157–168, 2018.

A. K. Yusuf, P. A. P. Mamza, A. S. Ahmed, and U. Agunwa, “Physico-Mechanical Properties of Rigid Polyurethane Foams Synthesized From Modified Castor Oil Polyols,” vol. 6, no. 7, pp. 548–556, 2016.

M. A. N. Azni, A. A. Sinar, Z. Firuz, “The effect of different palm oil based bio-polyols on foaming process and selected properties of porous polyurethanes,” Polym. Int, vol. 7, no. 12, pp. 3696–3700, 2013.

A. Kairyte and S. Vejelis, “Evaluation of forming mixture composition impact on properties of water blown rigid polyurethane ( PUR ) foam from rapeseed oil polyol,” Ind. Crops Prod., vol. 66, pp. 210–215, 2015, doi: 10.1016/j.indcrop.2014.12.032.

S. A. Azni MN, Sinar AA, Firuz Z, “Characterization and Mechanical Properties of Biomass Polyurethane,” Adv. Environ. Biol., vol. 7, no. 12, pp. 3696–3699, 2013.

V. Ribeiro, M. A. Mosiewicki, M. Irene, M. Coelho, P. M. Stefani, and N. E. Marcovich, “Polyurethane foams based on modi fi ed tung oil and reinforced with rice husk ash I : Synthesis and physical chemical characterization,” Polym. Test., vol. 32, no. 2, pp. 438–445, 2013, doi: 10.1016/j.polymertesting.2013.01.002.

N. Aida, S. S. Munawar, B. D. Argo, D. Purnomo, S. M. Sutan, B. Subiyanto, Ismadi, W. Fatriasasi, A. Syahrir, F. Akbar, “The effect of sorghum bagasse particles and composite density on the physical , mechanical and morphological properties of rigid polyurethane foam composites The effect of sorghum bagasse particles and composite density on the physical , mechanical and mo,” IOP Conf. Ser. Earth Environ. Sci., vol. 1017, pp. 1–12, 2022, doi: 10.1088/1755-1315/1017/1/012014.

S. Członka, N. Sienkiewicz, A. Strąkowska, and K. Strzelec, “SC,” Polym. Test., vol. 14, pp. 1–48, 2018, doi: 10.1016/j.polymertesting.2018.09.032.

B. Xue, J. Wen, and R. Sun, “Lignin-Based Rigid Polyurethane Foam Reinforced with Pulp Fiber: Synthesis and Characterization,” ACS Sustain. Chem. Eng, vol. 2, p. 1474−1480, 2014, doi: 10.1021/sc5001226.

S. S. Munawar, C. D. Widyanto, L. S. Hutahean, D. Purnomo, B. Subiyanto, Ismadi, A. Syahrir, F. Akbar, D. P. Kosasih, “The effect of oil palm trunk particles and composite density on the physical and mechanical properties of rigid polyurethane foam composite,” IOP Conf. Ser. Earth Environ. Sci., vol. 891, no. 1, pp. 0–10, 2021, doi: 10.1088/1755-1315/891/1/012003.

Published

2024-02-26