Mechanical Properties and Durability of Impregnated Sengon Wood Using Monoethylene Glycol and SiO2 Nanoparticles

Authors

  • Istie Rahayu IPB University, Bogor, Indonesia
  • Mohamad Rizki Riadhi IPB University, Bogor, Indonesia
  • Irma Wahyuningtyas IPB University, Bogor, Indonesia
  • Esti Prihatini IPB University, Bogor, Indonesia
  • Rohmat Ismail IPB University, Bogor, Indonesia

DOI:

https://doi.org/10.32734/jsi.v7i02.15729

Keywords:

Durability, Impregnation, Mechanical Properties, MEG, Sengon, SiO2 Nanoparticles

Abstract

Sengon wood (Falcataria moluccana Miq.) is a short-rotation wood which has weak quality characteristics, i.e., low specific gravity, strength, durability, density, and dimensional stability. This study aimed to find out the impact of monoethylene glycol (MEG) and SiO2 nanoparticle impregnation treatment on mechanical properties (MOE, MOR, and hardness) and wood durability. Four kinds of solution were used to impregnate sengon wood: untreated (water), 50% MEG, MEGSiO2 0.5%, and MEGSiO2 1%. The impregnation process was initiated by applying 0.5 atm of vacuum for 60 minutes, followed by 2.5 bar of pressure for 120 minutes. The results showed that MEG and SiO2 nanoparticle impregnation treatment significantly affected the mechanical properties (MOE, MOR, and hardness) and the durability of sengon wood against dry wood and subterranean termite bites. The optimum treatment to increase the properties of sengon wood so that its strength class increases to III-IV and durability class IV was MEG SiO2 1% treatment

Downloads

Download data is not yet available.

References

H. Krisnawati, M. Kallio, and M. Kanninen, Anthocephalus cadamba Miq.: Ecology, Silviculture and Productivity. Bogor (ID): CIFOR, 2011. doi: 10.17528/cifor/003481.

J. L. Bowyer, R. Shmulsky, and J. G. Haygreen, Forest Products and Wood Science - An Introduction, 5th Editio., vol. Mc, no. 3. Iowa (US): Blackwell Publisher, 2007. doi: 10.1002/9780470960035.

A. Birrnaqiy, Basyarudddin, and J. Malik, “Impregnation analysis of phenol-formaldehyde resin on sengon wood to explore the potential of sengon wood as construction material,” IOP Conf. Ser. Earth Environ. Sci., vol. 1007, no. 2002, p. 012021, 2021, doi: 10.1088/1755-1315/1007/1/012021.

E. Setyawan, “Characteristics of Wood Pellets from Sengon Tree (Albizia Chinensis) Waste Materials for Eco-Friendly Fuel,” Int. J. Des. Nat. Ecodynamics, vol. 19, no. 2, pp. 691–697, 2024, doi: 10.18280/ijdne.190236.

W. Darmawan et al., “Lathe check characteristics of fast growing sengon veneers and their effect on LVL glue-bond and bending strength,” J. Mater. Process. Technol., vol. 215, no. 1, pp. 181–188, 2015, doi: 10.1016/j.jmatprotec.2014.08.015.

A. Widjaja, D. Moentamaria, and H. F. Sangian, “Biodelignification of Sengon (Paraserianthes falcataria) and Pine (Pinus merkusii) Using White-Rot Fungus Phanerochaete chrysosporium,” J. Fundam. Appl. Chem. Eng., vol. 3, no. 1, pp. 1–6, 2022, doi: 10.12962/j2964710X.v3i1.13043.

H. Aiso et al., “Anatomical, chemical, and physical characteristics of tension wood in two tropical fast-growing species, Falcataria moluccana and Acacia auriculiformis,” Tropics, vol. 25, no. 1, pp. 33–41, 2016, doi: 10.3759/tropics.25.33.

M. A. Alipon, E. O. Bondad, and D. M. Gilbero, “Anatomical Properties and Utilization of 3-, 5-, and 7-yr-old Falcata [Falcataria moluccana ( Miq .)] Barneby & J . W . Grimes] from Caraga Region , Mindanao Philippines,” Philipp. J. Sci., vol. 150, no. 5, pp. 1307–1319, 2021, doi: 10.56899/150.05.38.

J. Rojas-sandoval, “CABI Copendium: Falcataria moluccana (Batai Wood).” 2023. [Online]. Available: https://doi.org/10.1079/cabicompendium.3884

I. Rahayu, W. Darmawan, N. Nugroho, D. Nandika, and R. Marchal, “Demarcation point between juvenile and mature wood in sengon (Falcataria moluccana) and jabon (Antocephalus cadamba),” J. Trop. For. Sci., vol. 26, no. 3, pp. 331–339, 2014,

A. Martawijaya, S. Hadjodarsono, and M. Haji, Atlas Kayu Indonesia Jilid II. Bogor (ID): Pusat Penelitian dan Pengembangan Hutan dan Konservasi Alam, 2005. doi: 10.1163/22941932-90001149.

C. A. S. Hill, Wood modification: Chemical, thermal, and other processes. West Sussex (UK): John Willey and Sons Ltd., 2006. doi: 10.1002/0470021748.

S. Augustina, W. Dwianto, I. Wahyudi, W. Syafii, P. Gérardin, and S. Marbun, “Wood Impregnation in Relation to Its Mechanisms and Properties Enhancement,” Bioresour. Technol., vol. 18, no. 2, pp. 4332–4372, 2023, doi: 10.15376/biores.18.2.Augustina.

T. J. Teng et al., “Conventional technology and nanotechnology in wood preservation: A review,” BioResources, vol. 13, no. 4, pp. 9220–9252, 2018, doi: 10.15376/biores.13.4.Teng.

F. F. P. Kollmann, E. W. Kuenzi, and A. J. Stamm, Principles of Wood Science and Technology Part 2. Wood Based Materials. 1975.

B. Jambreković, E. G. Bajsić, N. Španić, T. Sedlar, and T. Sinković, “Viscoelastic and Thermal Properties of Styrene Modified Fir Wood,” Polymers (Basel)., vol. 14, no. 4, pp. 1–13, 2022, doi: 10.3390/polym14040786.

W. Zhang et al., “In Situ Construction of Thermotropic Shape Memory Polymer in Wood for Enhancing Its Dimensional Stability,” Polymers (Basel)., vol. 14, no. 4, pp. 1–15, 2022, doi: 10.3390/polym14040738.

I. Rahayu, I. Wahyuningtyas, L. Zaini, W. Darmawan, A. Maddu, and E. Prihatini, “Physical properties of impregnated ganitri wood by furfuryl alcohol and nano-SiO2,” IOP Conf. Ser. Earth Environ. Sci., vol. 891, no. 1, p. 012012, 2021, doi: 10.1088/1755-1315/891/1/012012.

F. C. Dirna, I. Rahayu, L. H. Zaini, W. Darmawan, and E. Prihatini, “Improvement of fast-growing wood species characteristics by MEG and nano SiO2 impregnation,” J. Korean Wood Sci. Technol., vol. 48, no. 1, pp. 41–49, 2020, doi: 10.5658/WOOD.2020.48.1.41.

N. K. Gor, P. K. Chinthala, A. Das, and P. D. Vaidya, “An overview of mono-ethylene glycol synthesis via CO coupling reaction: Catalysts, kinetics, and reaction pathways,” Can. J. Chem. Eng., vol. 101, no. 7, pp. 4054–4075, 2023, doi: 10.1002/cjce.24736.

ATSDR (Agency for Toxic Substances and Disease Registry), “Case study in environmental medicine (CSEM): Ethylene glycol and propylene glycol,” Agency for Toxic Substances and Disease Registry. pp. 1–124, 2020. doi: 10.1016/b978-1-4831-9675-6.50028-x.

A. H. Norhanifah, A. R. Norliza, and J. Rafidah, “Production of Monoethylene Glycol from Lignocellulosic Biomass via Catalytic Hydrogenation: A Review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1257, no. 1, p. 12015, 2022, doi: 10.1088/1757-899X/1257/1/012015.

D. G. Queiroz, C. M. F. da Silva, M. Minale, D. Merino, and E. F. Lucas, “The effect of monoethylene glycol on the stability of water-in-oil emulsions,” Can. J. Chem. Eng., vol. 100, no. 1, pp. 44–53, Jan. 2022, doi: 10.1002/cjce.24076.

N. Dawass, R. R. Wanderley, M. Ramdin, O. A. Moultos, H. K. Knuutila, and T. J. H. Vlugt, “Solubility of Carbon Dioxide , Hydrogen Sul fi de , Methane , and Nitrogen in Monoethylene Glycol ; Experiments and Molecular Simulation,” J. Chem. Eng. Data, vol. 66, no. 1, pp. 524–534, 2021, doi: 10.1021/acs.jced.0c00771.

S. Ammar, K. Ramesh, B. Vengadaesvaran, S. Ramesh, and A. K. Arof, “A novel coating material that uses nano-sized SiO2 particles to intensify hydrophobicity and corrosion protection properties,” Electrochim. Acta, vol. 220, no. 1, pp. 417–426, 2016, doi: 10.1016/j.electacta.2016.10.099.

W. S. Putro, V. Y. Lee, K. Sato, J.-C. Choi, and N. Fukaya, “From SiO(2) to Alkoxysilanes for the Synthesis of Useful Chemicals.,” ACS omega, vol. 6, no. 51, pp. 35186–35195, Dec. 2021, doi: 10.1021/acsomega.1c05138.

J. Škvarla and J. Škvarla, “A unified analysis of the coagulation behaviour of silica hydrosols—when the colloid and polymer science meet,” Colloid Polym. Sci., vol. 298, no. 2, pp. 123–138, 2020, doi: 10.1007/s00396-019-04582-7.

E. Prihatini, I. Wahyuningtyas, I. S. Rahayu, and R. Ismail, “Pengaruh larutan furfuril alkohol dan nanopartikel SiO2 pada beberapa metode impregnasi kayu jabon,” Indones. J. Lab., vol. 6, no. Special Edition, pp. 7–13, 2023, doi: 10.22146/ijl.v0i3.84108.

A. Farah, A. Zaidon, U. Anwar, M. Adawiah, and S. Lee, “Improved performance of wood polymer nanocomposite impregnated with metal oxide nanoparticle-reinforced phenol formaldehyde resin,” J. Trop. For. Sci., vol. 33, no. 1, pp. 77–87, 2021, doi: 10.26525/jtfs2021.33.1.77.

A. Hazarika and T. K. Maji, “Properties of wood polymer nanocomposites impregnated with melamine formaldehyde-furfuryl alcohol copolymer and nanoclay,” Cellul. Chem. Technol. Cellul. Chem. Technol, vol. 51, no. 4, pp. 363–377, 2017, [Online]. Available: https://doi.org/10.1002/pen.23643

Y. Dong, Y. Yan, S. Zhang, and J. Li, “Wood/polymer nanocomposites prepared by impregnation with furfuryl alcohol and Nano-SiO2,” BioResources, vol. 9, no. 4, pp. 6028–6040, 2014, doi: 10.15376/biores.9.4.6028-6040.

I. Deveci, C. Sacli, T. Turkoglu, E. Baysal, H. Toker, and H. Peker, “Effect of SiO2 and Al2O3 Nanoparticles Treatment on Thermal Behavior of Oriental Beech Wood,” Wood Res., vol. 63, no. 4, pp. 1–7, 2018, [Online]. Available: http://www.woodresearch.sk/cms/effect-of-sio2-and-al2o3-nanoparticles-treatment-on-thermal-behavior-of-oriental-beech-wood/

P. Baishya and T. K. Maji, “Enhancement in physicochemical properties of citric acid/nano SiO2 treated sustainable wood-starch nanocomposites,” Cellulose, vol. 24, no. 10, pp. 4263–4274, 2017, doi: 10.1007/s10570-017-1399-2.

T. Kanokwijitsilp, P. Traiperm, T. Osotchan, and T. Srikhirin, “Development of abrasion resistance SiO2 nanocomposite coating for teak wood,” Prog. Org. Coatings, vol. 93, no. 1, pp. 118–126, 2016, doi: 10.1016/j.porgcoat.2015.12.004.

G. Wei, N. Xiaoting, C. Yingchun, and L. Wei, “Ultraviolet Durability of Burma Rosewood Polished Using Beewax Modified by Hydrophobic Nano SiO2,” J. Nanjing For. Univ., vol. 39, no. 5, pp. 111–117, 2015, doi: 10.3969/j.issn.1000-2006.2015.05.018.

M. Kalbarczyk, S. Skupiński, and M. Kosmulski, “Thermal Stability of Dispersions of Amino-Functionalized Silica in Glycol and in 50–50 Aqueous Glycol,” Molecules, vol. 29, no. 11. 2024. doi: 10.3390/molecules29112686.

M. Kosmulski and M. Kalbarczyk, “Zeta Potential of Nanosilica in 50% Aqueous Ethylene Glycol and in 50% Aqueous Propylene Glycol,” Molecules, vol. 28, no. 3. p. 1335, 2023. doi: 10.3390/molecules28031335.

I. Rahayu, L. Zaini, D. Nandika, W. Darmawan, E. Prihatini, and R. Agustian, “Physical properties of impregnated sengon wood by monoethylen glycol and nano silica from betung bamboo sticks,” IOP Conf. Ser. Mater. Sci. Eng., vol. 935, no. 1, pp. 1–15, 2020, doi: 10.1088/1757-899X/935/1/012057.

I. Rahayu, A. Pratama, W. Darmawan, D. Nandika, and E. Prihatini, “Characteristics of impregnated wood by nano silica from betung bamboo leaves,” IOP Conf. Ser. Earth Environ. Sci., vol. 891, no. 1, p. 012019, 2021, doi: 10.1088/1755-1315/891/1/012019.

I. Rahayu, W. Darmawan, L. H. Zaini, and E. Prihatini, “Characteristics of fast-growing wood impregnated with nanoparticles,” J. For. Res., vol. 31, no. 2, pp. 677–685, 2020, doi: 10.1007/s11676-019-00902-3.

S. Soleimani, S. Osfouri, R. Azin, and A. Akbarzadeh, “Effect of Silica Nanoparticles on Decreasing Scale Deposition in Mono-Ethylene Glycol Solution,” in The 10th International Chemical Engineering Congress & Exhibition (IChEC 2018), 2018, pp. 1–5. [Online]. Available: https://www.researchgate.net/publication/341313982

S. Soleimani, S. Osfouri, and R. Azin, “Experimental investigation and kinetic modeling of nanocrystal growth for scale reduction in mono-ethylene glycol regeneration unit,” SN Appl. Sci., vol. 1, no. 11, pp. 2–3, 2019, doi: 10.1007/s42452-019-1386-3.

S. B. Hosseini, S. Hedjazi, L. Jamalirad, and A. Sukhtesaraie, “Effect of nano-SiO2 on physical and mechanical properties of fiber reinforced composites (FRCs),” J. Indian Acad. Wood Sci., vol. 11, no. 2, pp. 116–121, 2014, doi: 10.1007/s13196-014-0126-y.

ASTM, “ASTM D143-22: Standard Test Methods for Small Clear Specimens of Timber,” American Standard of Testing Method. 2022. doi: 10.1520/D0143-23.

ASTM (American Standard of Testing Method), “ASTM D 1758 - 06: Standard Method of Evaluating Wood Preservatives By Field Tests With Stakes.” 2000.

SNI 01-7207, SNI 01-7207-2006: Uji ketahanan kayu dan produk kayu terhadap organisme perusak kayu. 2006. [Online]. Available: https://app.box.com/shared/o9zofikn44cgjpjxqu6m

Badan Standardisasi Nasional, Tata Cara Perencanaan Konstruksi Kayu Indonesia. 2002.

F. Arriaga, X. Wang, G. Íñiguez-González, D. F. Llana, M. Esteban, and P. Niemz, “Mechanical Properties of Wood: A Review,” Forests, vol. 14, no. 6, pp. 1–61, 2023, doi: 10.3390/f14061202.

L. Cheng, Y. Di, and W. Wang, “Correlation of wood properties with chemical composition and microstructure of wood components,” Res. Sq., no. 1, pp. 1–24, 2023, doi: 10.21203/rs.3.rs-2611726/v1.

E. Xu, Y. Zhang, and L. Lin, “Improvement of Mechanical , Hydrophobicity and Thermal Properties of Chinese Fir Wood by Impregnation of Nano Silica Sol,” Polymers (Basel)., vol. 12, no. 1632, pp. 1–12, 2020, doi: 10.3390/polym12081632.

H. Wang, Y. Zhang, H. Li, H. Hou, C. Li, and M. Liu, “Research on the Impregnation Process and Mechanism of Silica Sol / Phenolic Resin Modified Poplar Wood,” Forests, vol. 14, no. 2176, pp. 1–19, 2023, doi: 10.3390/f14112176.

N. Zhang, M. Xu, and L. Cai, “Improvement of mechanical, humidity resistance and thermal properties of heat-treated rubber wood by impregnation of SiO2 precursor,” Sci. Rep., vol. 9, no. 1, pp. 1–9, 2019, doi: 10.1038/s41598-018-37363-3.

X. Wang, X. Chen, X. Xie, S. Cai, Z. Yuan, and Y. Li, “Multi-scale evaluation of the effect of phenol formaldehyde resin impregnation on the dimensional stability and mechanical properties of Pinus massoniana Lamb.,” Forests, vol. 10, no. 8, 2019, doi: 10.3390/f10080646.

S. Zaboon, A. Soames, V. Ghodkay, R. Gubner, and A. Barifcani, “Recovery of mono-ethylene glycol by distillation and the impact of dissolved salts evaluated through simulation of field data,” J. Nat. Gas Sci. Eng., vol. 44, no. 1, pp. 214–232, 2017, doi: 10.1016/j.jngse.2017.04.007.

F. Negro, T. F. A. Franca, and E. Hansen, “SWST Student Chapters: A Valuable Means of Broadening Student Perspectives in Wood Science and Technology,” Wood Fiber Sci., vol. 54, no. 2, pp. 75–80, 2022, doi: 10.22382/wfs-2022-08.

N. Wang, X. Wu, and C. S. Liu, “Opposite effects of SiO2 nanoparticles on the local α and Larger-Scale α’ segmental relaxation dynamics of PMMA nanocomposites,” Polymers (Basel)., vol. 11, no. 6, pp. 1–15, 2019, doi: 10.3390/polym11060979.

A. C. M. Valle, B. S. Ferreira, G. A. Prates, D. Goveia, and C. I. de Campos, “Physical and mechanical properties of particleboard from Eucalyptus grandis produced by urea formaldehyde resin with SiO2 nanoparticles,” Eng. Agric., vol. 40, no. 3, pp. 289–293, 2020, doi: 10.1590/1809-4430-ENG.AGRIC.V40N3P289-293/2020.

Z. Tang, L. Yu, Y. Zhang, L. Zhu, and X. Ma, “Effects of nano-sio2/polyethylene glycol on the dimensional stability modified acq treated Southern pine,” Wood Res., vol. 63, no. 5, pp. 763–770, 2018, [Online]. Available: http://www.woodresearch.sk/wr/201805/03.pdf

A. Kumar, P. Ryparovà, M. Petrič, J. Tywoniak, and P. Hajek, “Coating of wood by means of electrospun nanofibers based on PVA / SiO 2 and its hydrophobization with octadecyltrichlorosilane ( OTS ),” Holzforsch. Holzforsch. Publ. by Gruyter Holzforsch. is an Int. Sch. J. that Publ. cutting-edge Res. Biol. Chem. Phys. Technol. wood wood components. High Qual. Pap. about biot, vol. 71, no. 3, pp. 1–7, 2016, doi: 10.1515/hf-2016-0108.

A. Karaman, M. N. Yıldırım, and Ş. Ş. YAŞAR, “Determination of modulus of elasticity and bending strength of wood material impregnated with nanoparticle silicon dioxide (SiO2),” Turkish J. For. | Türkiye Orman. Derg., vol. 20, no. 1, pp. 50–56, 2019, doi: 10.18182/tjf.462611.

Y. Yan et al., “Enhancement of Mechanical and Thermal Properties of Poplar through the Treatment of Glyoxal-Urea/Nano-SiO2,” RSC Adv., vol. 5, pp. 54148–54155, 2015, doi: 10.1039/C5RA07294H.

S. Doubek, W. Sciences, C. Republic, L. Reinprecht, and S. Republic, “Effect of The Passive Chemical Modification of Wood with Silicon Dioxide (Silica) on Its Properties and Inhibition,” Wood Res., vol. 63, no. 4, pp. 599–616, 2018, [Online]. Available: http://www.woodresearch.sk/cms/effect-of-the-passive-chemical-modification-of-wood-with-silicon-dioxide-silica-on-its-properties-and-inhibition-of-moulds/

L. Ming-li, L. Chun-feng, and L. Yan-long, “Physical and Mechanical Properties of Modified Poplar Wood by Heat Treatment and Impregnation,” Wood Res., vol. 64, no. 1, pp. 145–154, 2019, [Online]. Available: http://www.woodresearch.sk/wr/201901/14.pdf

A. M. C. Yona, J. Žigon, P. Matjaž, and M. Petrič, Potentials of silicate-based formulations for wood protection and improvement of mechanical properties: A review, vol. 55, no. 4. 2021. doi: 10.1007/s00226-021-01290-w.

Y. S. Hadi et al., “Furfurylation of wood from fast-growing tropical species to enhance their resistance to subterranean termite,” Eur. J. Wood Wood Prod., vol. 79, no. 4, pp. 1007–1015, 2021, doi: 10.1007/s00107-021-01676-4.

H. Miyafuji and K. Minamoto, “Fire and termite resistance of wood treated with PF6-based ionic liquids,” Sci. Rep., vol. 12, no. 1, pp. 1–10, 2022, doi: 10.1038/s41598-022-18792-7.

H. Nandasiri and L. De Silva, “Evaluation of Borate-Glycol Wood Preservatives to Control Dry-Wood Termite and Pin-Hole Borers in Sri Lanka,” in Proceedings of the 24th International Forestry and Environment Symposium 2019, 2021.

I. Rahayu, A. S. S. Min Rohmatillah, E. Prihatini, W. Darmawan, and G. D. Laksono, “Fast-Growing Wood-Polymer Nano Composite Characteristics through Nano-SiO2 Impregnation,” Wood Res. J., vol. 13, no. 2, pp. 69–78, 2023, doi: 10.51850/wrj.2022.13.2.69-78.

B. C. Peters, D. Wibowo, G. Z. Yang, Y. Hui, A. P. J. Middelberg, and C. X. Zhao, “Evaluation of baiting fipronil-loaded silica nanocapsules against termite colonies in fields,” Heliyon, vol. 5, no. 8, p. e02277, 2019, doi: 10.1016/j.heliyon.2019.e02277.

Y. Hadi, I. Rahayu, and S. Danu, “Termite Resistance of Jabon Wood Impregnated With Methyl Methacrylate,” J. Trop. For. Sci., vol. 27, no. 1, pp. 25–29, 2015, [Online]. Available: https://jtfs.frim.gov.my/jtfs/article/view/892

A. Arpanaei, Q. Fu, and T. Singh, “Nanotechnology approaches towards biodeterioration-resistant wood: A review,” J. Bioresour. Bioprod., vol. 9, no. 1, pp. 3–26, 2024, doi: 10.1016/j.jobab.2023.09.001.

B. Prasetyo, H. Irwandi, and N. Pusparini, “Karakteristik Curah Hujan Berdasarkan Ragam Topografi Di Sumatera Utara,” J. Sains Teknol. Modif. Cuaca, vol. 19, no. 1, p. 11, 2018, doi: 10.29122/jstmc.v19i1.2787.

R. Ramesh, M. Kabbaj, R. Sundararaj, and P. Jouquet, “Rainfall and soil properties in fl uence termite mound abundance and height : A case study with Odontotermes obesus ( Macrotermitinae ) mounds in the Indian Western Ghats forests,” Appl. Soil Ecol., vol. 111, pp. 1–6, 2016, doi: 10.1016/j.apsoil.2016.11.011.

Y. S. Hadi, D. S. Nawawi, I. B. Abdillah, G. Pari, and R. Pari, “Evaluation of discoloration and subterranean termite resistance of four furfurylated tropical wood species after one-year outdoor exposure,” Forests, vol. 12, no. 7, 2021, doi: 10.3390/f12070900.

H. Pratiknyo, I. Ahmad, and B. H. Budianto, “Diversity and abundance of termites along altitudinal gradient and slopes in Mount Slamet, Central Java, Indonesia,” Biodiversitas, vol. 19, no. 5, pp. 1649–1658, 2018, doi: 10.13057/biodiv/d190508.

Arinana, A. R. Fannani, D. Nandika, and N. F. Haneda, “Field test on the palatability of the subterranean termites to pine wood with various treatments,” Biodiversitas, vol. 21, no. 12, pp. 5763–5771, 2020, doi: 10.13057/biodiv/d211237.

Arinana et al., “Termite diversity in urban landscape, South Jakarta, Indonesia,” Insects, vol. 7, no. 2, pp. 1–18, 2016, doi: 10.3390/insects7020020.

Published

2024-08-31

How to Cite

[1]
I. Rahayu, M. R. Riadhi, I. Wahyuningtyas, E. . Prihatini, and R. . Ismail, “Mechanical Properties and Durability of Impregnated Sengon Wood Using Monoethylene Glycol and SiO2 Nanoparticles”, J. Sylva Indonesiana, vol. 7, no. 02, pp. 110-121, Aug. 2024.