Analysis Sentiment Of Users Internet Service Providers In Indonesia On Social Media X Using Support Vector Machine

Authors

  • Fachrurrozy Nurqoulby Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Amalia Anjani Arifiyanti Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Dhian Satria Yudha Kartika Universitas Pembangunan Nasional “Veteran” Jawa Timur

DOI:

https://doi.org/10.32734/jocai.v8.i2-16317

Keywords:

Text Mining, Analysis Sentiment, x, Support Vector Machine, Classification Text

Abstract

Various internet service providers are starting to appear in Indonesia, they are competing to provide attractive offers to attract customers. Through social media, someone can find out opinions about whether internet service providers provide services as offered. X, formerly known as Twitter, is a social media platform where people can give their opinions in the form of posts. Various opinions were expressed by the public, ranging from positive, neutral, to negative. This research aims to create a post classification model regarding users of internet service providers into three sentiment classes, namely positive, neutral and negative. The model is created through several stages, such as data retrieval, data labeling, data preprocessing, data division, term weighting, and creating a classification model using the Support Vector Machine algorithm. The results of this research show that the SVM model with a Linear kernel obtained the highest accuracy of 83% compared to the RBF kernel SVM and Polynomial kernel SVM, with an F1-score of 90% for the negative class, 66% for the neutral class, and 65% for the positive class.

Downloads

Download data is not yet available.

References

Ivan, Y. A. Sari, and P. P. Adikara, “Klasifikasi Hate Speech Berbahasa Indonesia di Twitter Menggunakan Naive Bayes dan Seleksi Fitur Information Gain dengan Normalisasi Kata,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 3, no. 5, pp. 4914–4922, 2019.

O. Oueslati, E. Cambria, M. Ben HajHmida, and H. Ounelli, “A review of sentiment analysis research in Arabic language,” Futur. Gener. Comput. Syst., vol. 112, pp. 408–430, 2020.

B. Liu, Sentiment Analysis and Opinion Mining. Morgan & Claypool, 2012.

E. Fitri, Y. Yuliani, S. Rosyida, and W. Gata, “Sentiment Analysis of the Ruangguru Application Using Naive Bayes, Random Forest and Support Vector Machine Algorithms,” J. Transform., vol. 18, no. 1, p. 71, 2020.

P. Fremmuzar and A. Baita, “Uji Kernel SVM dalam Analisis Sentimen Terhadap Layanan Telkomsel di Media Sosial Twitter,” Komputika J. Sist. Komput., vol. 12, no. 2, pp. 57–66, 2023.

T. K. Shivaprasad and J. Shetty, “Sentiment analysis of product reviews: A review,” Int. Conf. Inven. Commun. Comput. Technol., 2017.

M. A. Ullah, S. M. Marium, S. A. Begum, and N. S. Dipa, “An algorithm and method for sentiment analysis using the text and emoticon,” ICT Express, vol. 6, no. 4, pp. 357–360, 2020.

K. D. W. Yonatha and A. Eka, “The Effects of Different Kernels in SVM Sentiment Analysis on Mass Social Distancing,” vol. 9, no. 2, pp. 161–168, 2020.

F. S. Darusman, A. A. Arifiyanti, and S. F. A. Wati, “Sentiment Analysis Pedulilindungi Tweet Using Support Vector Machine Method,” Appl. Technol. Comput. Sci. J., vol. 4, no. 2, pp. 113–118, 2022.

M. Kamber and J. Han, Data Mining: Concepts and Techniques : Concepts and Techniques. 2018.

S. Qaiser and R. Ali, “Text Mining : Use of TF-IDF to Examine the Relevance of Words to Documents,” vol. 181, no. 1, pp. 25–29, 2018.

R. Feldman and J. Sanger, The Text Mining Handbook: Advanced Unstructure Data. New York: Cambridge University Press, 2007.

P. Nomleni, “Sentiment Analysis Menggunakan Support Vector Machine (SVM),” Institut Teknologi Sepuluh November, 2015.

A. F. Rochim, K. Widyaningrum, and D. Eridani, “Comparison of Kernels Function between of Linear, Radial Base and Polynomial of Support Vector Machine Method Towards COVID-19 Sentiment Analysis,” pp. 224–228, 2021.

A. Luque, A. Carrasco, A. Martín, and A. de las Heras, “The impact of class imbalance in classification performance metrics based on the binary confusion matrix,” Pattern Recognit., vol. 91, pp. 216–231, 2019.

T. N. Wijaya, R. Indriati, and M. N. Muzaki, “Analisis Sentimen Opini Publik Tentang Undang-Undang Cipta Kerja Pada Twitter,” Jambura J. Electr. Electron. Eng., vol. 3, no. 2, pp. 78–83, 2021.

Q. A. Memon and S. Ahmed Khoja, Data Science Theory, Analysis, and Applications, 1st ed. CRC Press, 2019.

Published

2024-07-31

How to Cite

Fachrurrozy Nurqoulby, Amalia Anjani Arifiyanti, & Dhian Satria Yudha Kartika. (2024). Analysis Sentiment Of Users Internet Service Providers In Indonesia On Social Media X Using Support Vector Machine. Data Science: Journal of Computing and Applied Informatics, 8(2), 88-95. https://doi.org/10.32734/jocai.v8.i2-16317