Correlation of Antioxidant Properties Between Immature and Mature Okra (Abelmoschus Esculentus) Fruits


  • Miza Badriah Nazri Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
  • Azrina Azlan Professor Department of Nutrition
  • Sharmin Sultana Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Malaysia
  • Rozita Yahya Department of Chemistry, Faculty of Science and Mathematics, Sultan Idris Education University, Malaysia



antioxidant activity, ethanol-water solvent, okra fruits, total flavonoid content, total phenol content


This study aimed to assess and compare the antioxidant activity and content (total flavonoid levels and total phenolic) of mature and immature okra. The antioxidant activity of okra fruits was assayed using four methods, namely: Aluminium Chloride Colorimetric assay, Folin-Ciocalteu assay, 1, 1-diphenyl-2-picrylhydrazyl (DPPH), and Reducing Antioxidant Power assay (FRAP) assays. The immature, mature, and very mature okra samples (less than 8 days, 10-15 days, and more than 20 days, respectively) were extracted using two different solvents (65% ethanol and water). The sample that was extracted with mature ethanol had the highest Total Phenolic Content (TPC) at 21.564 ± 1.635 mg GAE/g, while the sample that was extracted with extremely mature ethanol had the highest TFC at 54.391 ± 8.224 mg QE/g. The mature 65% ethanolic extracted sample showed the lowest IC50 value of DPPH scavenging activity (0.920± 0.096 mg/ml), and the mature ethanol extracted sample had the highest FRAP value (232.018± 5.337 μmol Fe2+/g). These studies showed that ethanolic extracts of mature Abelmoschus esculentus had higher antioxidant content and activity than okra water extracts. Based on the DPPH Radical Scavenging Assay revealed favourable associations between TPC (r = 0.860), TFC (r = 0.742), and antioxidant activity as evaluated by FRAP, demonstrating that both phenolics and flavonoids contributed to the extract’s antioxidant properties. Both TPC and TFC showed negative correlations with IC50 values (r = -0.766, r = -0.650, respectively). In conclusion, the mature okra fruits extracted with 65% ethanol give higher antioxidant content than the water extracts of okra fruits and potentially be used as a source of antioxidants rather than be discarded.


Download data is not yet available.


Phaniendra, D. B. Jestadi, and L. Periyasamy, “Free radicals: properties, sources, targets, and their implication in various diseases,” Indian Journal of Clinical Biochemistry, vol. 30, no. 1, pp. 11–26, 2015, doi: 10.1007/s12291-014-0446-0.

G. Pizzino, N. Irrera, M. Cucinotta, G. Pallio, F. Mannino, V. Arcoraci, F. Squadrito, D. Altavilla, and A. Bitto, “Oxidative Stress: Harms and Benefits for Human Health,” Oxid Med Cell Long. Vol. 2017, doi: 10.1155/2017/8416763.

S. Škrovánková, L. Mišurcová, and L. Machů, “Antioxidant Activity and Protecting Health Effects of Common Medicinal Plants,” In Advances in Food and Nutrition Research, Academic Press Inc. vol. 67, pp. 75–139, 2012, doi: 10.1016/B978-0-12-394598-3.00003-4.

S. Das, G. Nandi, and L. K. Ghosh, “Okra and its various applications in Drug Delivery, Food Technology, Health Care and Pharmacological Aspects,” J Pharm Sci Res. vol. 11, no. 6, pp. 2139–2147, 2019.

S. K. Doreddula, S. R. Bonam, D. P. Gaddam, B. Srinivasa, R. Desu, N. Ramarao, and V. Pandy, “Phytochemical Analysis, Antioxidant, Antistress, and Nootropic Activities of Aqueous and Methanolic Seed Extracts of Ladies Finger (Abelmoschus esculentus L.) in Mice,” The Scientific World Journal, 2014, doi: 10.1155/2014/519848.

D. F. Olivera, A. Mugridge, A. R. Chaves, R. H. Mascheroni, and S. Z. Viña, “Quality Attributes of Okra (Abelmoschus esculentus L. Moench) Pods as Affected by Cultivar and Fruit Size,” J Food Res, vol. 1, no. 4, pp. 224-235, 2012, doi: 10.5539/jfr.v1n4p224.

D. D. Shen, X. Li, Y. L. Qin, M. T. Li, Q. H. Han, J. Zhou, S. Lin, L. Zhao, Q. Zhang, W. Qin, and D. T. Wu, “Physicochemical properties, phenolic profiles, antioxidant capacities, and inhibitory effects on digestive enzymes of okra (Abelmoschus esculentus) fruit at different maturation stages,” J Food Sci Technol, vol. 56, no. 3, pp. 1275–1286, 2019, doi: 10.1007/s13197-019-03592-1.

A. Roy, S. L. Shrivastava, and S. M. Mandal. “Functional properties of Okra Abelmoschus esculentus L. (Moench): traditional claims and scientific evidence,” Plant Science Today, vol. 1, no. 3, pp. 121–130, 2014, doi: 10.14719/pst.2014.1.3.63.

Q. W. Zhang, L. G. Lin, and W. C. Ye, “Techniques for extraction and isolation of natural products: A comprehensive review,” Chinese Medicine, vol. 13, no. 1, pp. 1-26, 2018,

S. K. Doreddula, S. R. Bonam, D. P. Gaddam, B. S. R. Desu, N. Ramarao, and V. Pandy, “Phytochemical analysis, antioxidant, antistress, and nootropic activities of aqueous and methanolic seed extracts of ladies finger (Abelmoschus esculentus L.) in mice,” Sci World J, 2014.

S. Kumar, A. Yadav, M. Yadav, and J. P. Yadav, “Effect of climate change on phytochemical diversity, total phenolic content and in vitro antioxidant activity of Aloe vera (L.) Burm. F,” BMC Research Notes, vol. 10, pp. 1-12, 2017.

S. Kamtekar, V. Keer, and V. Patil, “Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation,” J Appl Pharm Sci. vol. 4, no. 9, pp. 61-65, 2014.

Q. Hu, Y. Hu, and J. Xu, “Free radical-scavenging activity of Aloe vera (Aloe barbadensis Miller) extracts by supercritical carbon dioxide extraction,” Food Chem, vol. 91, no. 1, pp. 85-90, 2005.

A. Wahyuningsih, S. Puji, D. Winarni, M. Pramudya, N. Setianingsih, A. A. Mwendolwa, and F. Nindyasari, “Antioxidant potential of red okra pods (Abelmoschus esculentus Moentch),” Proceedings of KOBI 2nd International Confer, vol. 1, pp. 158-163, 2021.

A. M. A. Ali, M. E. El-Nour, and S. M. Yagi, “Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors,” J Gene Eng Biotechnol, vol. 16, no. 2, pp. 677-682, 2018.

I. F. Olawuyi, S. A. Akbarovich, C. K. Kim, and W. Y. Lee, “Effect of combined ultrasound‐enzyme treatment on recovery of phenolic compounds, antioxidant capacity, and quality of plum (Prunus salicina L.) juice,” J Food Pro Pre, vol. 45, no. 1, p. 15074, 2021.

R. R. Mphahlele, M. A. Stander, O. A. Fawole, and U. L. Opara, “Effect of fruit maturity and growing location on the postharvest contents of flavonoids, phenolic acids, vitamin C and antioxidant activity of pomegranate juice (cv. Wonderful),” Sci. Hortic, vol. 179, pp 36-45, 2014, doi: 10.1016/j.scienta.2014.09.007.

J. K. Ahiakpa, H. M. Amoatey, G. Amenorpe, J. Apatey, E. A Ayeh, and W. S. K. Agbemavor, “Mucilage content of 21 accessions of okra (Abelmoschus spp L.),” Scientia Agriculturae, vol.2, no. 2, pp. 96-101, 2014.

H. Vuorinen, K. Määttä, and R. Törrönen, “Content of the flavonols myricetin, quercetin, and kaempferol in Finnish berry wines,” J. Agric Food Chem, vol. 48, no. 7, pp. 2675-2680, 2000.

K. R. Anwar, B. Triyasmono, L. Rizki, M. Halwany, W. Lestari, and Fajar, “The influence of leaf age on total phenolic, flavonoids, and free tadical scavenging capacity of aquilaria beccariana.” J Pharma Biol Chem Sci, vol. 18, pp. 129-133, 2017.

B. P. Pratama, R. T. S. Supriyadi, and Y. Pranoto, Y, “Different leaf maturities and withering durations affect the antioxidant potential and aroma compound of Indonesian bay leaf [Syzygium polyanthum (Wight) Walp.],” Int Food Res J, vol. 28, no. 6, pp. 1196-1203, 2021, doi: 10.47836/ifrj.28.6.11.

A. Othman, N. J. Mukhtar, N. S. Ismail, and S. K Chang, S. K, “Phenolics, flavonoids content and antioxidant activities of 4 Malaysian herbal plants,” Int.Food Res J, vol. 21, no. 2, p. 759, 2014.

A. Othman, A. Ismail, F. A. Hassan, B. N. M. Yusof, and A. Khatib, “Comparative evaluation of nutritional compositions, antioxidant capacities, and phenolic compounds of red and green sessile joyweed (Alternanthera sessilis),” J Fun Food, vol. 21, pp. 263-271, 2016.

P. Ding and S. Syazwani, “Maturity stages affect antioxidant activity of "Md2" pineapple (Ananas Comosus L.),” Acta Horti, vol. 1088, pp. 223–226, 2015, doi: 10.17660/actahortic.2015.1088.34.

Assanga S. B. I, L. L. M. Luján, E. G. Rivera-Castañeda, Gil-Salido, A. A. A. L. Acosta-Silva, C. Y. Meza-Cueto, and J. L. Rubio-Pino, “Effect of maturity and harvest season on antioxidant activity, phenolic compounds and ascorbic acid of Morinda citrifolia L. (noni) grown in Mexico (with track change),” African Journal of Biotecnology, vol. 12, no, 29, pp 4630-4639, 2013, doi: 10.5897/AJB2013.12073.

J. S. Youn, Y. J. Kim, H. J. Na, H. J. H. R. Jung, C. K. Song, S. Y. Kang, and J. Y. Kim, “Antioxidant activity and contents of leaf extracts obtained from Dendropanax morbifera LEV are dependent on the collecting season and extraction conditions,” Food Sci. Biotechnol, vol. 28, no. 1, pp. 201-207, 2018, doi: 10.1007/s10068-018-0352-y.

A. Osman, A. El-Hadary, A. A. Korish, H. M AlNafea, and M.Abdel-Hamid, “Angiotensin-I converting enzyme inhibition and antioxidant activity of papain-hydrolyzed camel whey protein and its hepato-renal protective effects in thioacetamide-induced toxicity,” Foods, vol. 10, no. 2, p. 468, 2021.

D. T. Wu, X. R. Nie, D. D. Shen, H. Y. Li, L. Zhao, Q. Zhang, D. R. Lin, and W. Qin, “Phenolic compounds, antioxidant activities, and inhibitory effects on digestive enzymes of different cultivars of okra (Abelmoschus esculentus). Molecules,” vol. 25, no. 6, 2020, doi: 10.3390/molecules25061276

J. S. Kim and J. H. Lee, “Correlation between solid content and antioxidant activities in Umbelliferae salad plants,” Prev Nutr Food Sci, vol. 25, no.1, pp 84–92, 2020, doi: 10.3746/pnf.2020.25.1.84

M. A. Osman, G. I. Mahmoud, and S. S. Shoman, “Correlation between total phenols content, antioxidant power, and cytotoxicity,” Biointerface Res. Appl. Chem, vol. 11, no. 3, pp. 10640–10653, 2021, doi: 10.33263/BRIAC113.1064010653.

W. Nurcholis, R. Alfadzrin, N. Izzati, R. Arianti, B. A. Vinnai, F. Sabri, E. Kristóf, and I. M. Artika, “Effects of Methods and Durations of Extraction on Total Flavonoid and Phenolic Contents and Antioxidant Activity of Java Cardamom (Amomum compactum Soland Ex Maton) Fruit,” Plants, vol. 11, no. 17, 2022, doi: 10.3390/plants11172221.



How to Cite

Nazri, M. B. ., Azlan, A., Sultana, S., & Yahya, R. (2024). Correlation of Antioxidant Properties Between Immature and Mature Okra (Abelmoschus Esculentus) Fruits. Indonesian Journal of Agricultural Research, 7(1), 68 - 78.