Enhancement of Okra (Abelmoschus esculentus L.) Germination through Seed Priming Techniques

Authors

  • Anil Balchhaudi Institute of Agriculture and Animal Science (IAAS), Tribhuvan University, Nepal

DOI:

https://doi.org/10.32734/injar.v6i2.13660

Keywords:

GA3 priming, priming, seed germination, seed vigor index

Abstract

The presence of a hard seed coat, coupled with various abiotic stresses during germination, can result in delayed and erratic crop establishment of okra (Abelmoschus esculentus L.). Seed priming offers an efficient and cost-effective method to improve the emergence of okra seeds. A laboratory experiment was conducted to assess the effect of various priming methods on germination parameters. The investigation was laid out in a Complete Randomized Design (CRD) with six levels of seed priming methods viz. priming with 200 ppm GA3 solution, priming with 80% H2SO4 solution, priming with 0.3% KNO3 solution, priming with 5% PEG-6000 solution, priming with tap water, and control (without priming). The experiment was replicated four times. The effect of various priming methods on physiological and biometric parameters, i.e., germination percentage, mean days to germination, seed vigor index, root length, and shoot length, was investigated. The research results revealed that seed priming methods significantly influenced all the recorded parameters. Priming with GA3 recorded a significantly higher germination percentage (73.75%), root length (114.5 mm), shoot length (85 mm), and seed vigor index (14719 mm). Furthermore, priming with GA3 took significantly fewer mean days to germinate, requiring a mere 5.42 days. Priming with H2SO4 was as effective as priming with GA3 in terms of germination percentage, mean days to germination, seed vigor index, root length, and shoot length. The study concluded that priming with GA3 and priming with H2SO4 can be an effective method to expedite seed germination, enhance germination percentage, and increase the seed vigour of okra. In the absence of GA3 and H2SO4, hydropriming can be a felicitous alternative to combat poor crop emergence in an eco-friendly and cost-effective manner.

Downloads

Download data is not yet available.

References

R. P. Maurya, J. A. Bailey, and J. S. A. Chandler, “Impact of plant spacing and picking interval on the growth, fruit quality and yield of okra (Abelmoschus esculentus (L.) Moench),” Am. J. Agric. For, vol. 1, no. 4, pp. 48–54, 2013, doi: 10.11648/j.ajaf.20130104.11.

A. J. Farinde, O. K. Owolarafe, and O. I. Ogungbemi, “An overview of production, processing, marketing and utilisation of okra in Egbedore Local Government area of Osun State, Nigeria,” Agric. Eng. Int. CIGR Ejournal, vol. IX, 2007, doi: 10.3923/ja.2006.342.349.

MoALD, “Statistical Information on Nepalese Agriculture,” Ministry of Agriculture and Livestock Development, (2078/79). 2022.

G. M. Arifuzzaman Khan, N. D. Yilmaz, and K. Yilmaz, “Okra fibers: Potential material for green biocomposites,” Green Biocomposites Des, Appl., pp. 261–284, 2017.

O. C. Adebooye and C. O. Oputa, “Effects of galex (r) on growth and fruit nutrient composition of okra (Abelmoschus esculentus (l.) Moench),” Ife J. Agric, vol. 18, no. 1, pp. 1–9, 1996.

S. Petropoulos, Â. Fernandes, L. Barros, and I. C. F. R. Ferreira, “Chemical composition, nutritional value and antioxidant properties of Mediterranean okra genotypes in relation to harvest stage,” Food Chem, vol. 242, pp. 466–474, 2018, doi: 10.1016/j.foodchem.2017.09.082.

O. E. Adelakun and O. J. Oyelade, “Potential use of okra seed (Abelmoschus esculentus Moench) flour for food fortification and effects of processing,” in Flour and Breads and their Fortification in Health and Disease Prevention, 2011, pp. 205–212. doi: 10.1016/B978-0-12-380886-8.10019-4.

L. Lin, Y. Hsiao, and C. G. Kuo, “Discovering indigenous treasures: promising indigenous vegetables from around the world,” AVRDC- the world vegetable center publication, no. 09-720. AVRDC- the world vegetable center, shanhua, taiwan,. pp. 84–87, 2009.

S. Dilruba, M. Hasanuzzaman, R. Karim, and K. Nahar, “Yield response of okra to different sowing time and application of growth hormones,” J. Hortic. Sci. Ornam. Plants, vol. 1, pp. 10–14, 2009.

C. F. Morris and A. N. Massa, “Puroindoline genotype of the U.S. national institute of standards & technology reference material 8441, wheat hardness,” Cereal Chem, vol. 80, no. 6, pp. 674–678, 2003, doi: 10.1094/CCHEM.2003.80.6.674.

L. Marsh, “Moisture affects cowpea and okra seed emergence and growth at low temperatures,” HortScience, vol. 28, no. 8, pp. 774–777, 1993, doi: 10.21273/hortsci.28.8.774.

L. F. V. Purquerio, A. A. do Lago, and F. A. Passos, “Germination and hardseedness of seeds in okra elite lines,” Hortic. Bras, vol. 28, no. 2, pp. 232–235, 2010, doi: 10.1590/s0102-05362010000200017.

M. M. . El Balla, A. Saidahmed, and M. Makkawi, “Effect of moisture content and maturity on hardseededness and germination in okra (Abelmoschus esculentus L. Moench),” Int. J. Plant Physiol. Biochem, vol. 3, no. 6, pp. 102–107, 2011, [Online]. Available: http://www.academicjournals.org/ijppb

M. Farooq, S. M. A. Basra, I. Afzal, and A. Khaliq, “Optimization of hydropriming techniques for rice seed invigoration,” Seed Sci. Technol, vol. 34, no. 2, pp. 507–512, 2006.

P. A. Brocklehurst and J. DEARMAN, “Interactions between seed priming treatments and nine seed lots of carrot, celery and onion. I. Laboratory germination,” Ann. Appl. Biol, vol. 102, no. 3, pp. 577–584, 1983.

R. K. Maiti, P. Vidyasagar, D. Rajkumar, A. Ramaswamy, and H. G. Rodriguez, “Seed priming improves seedling vigor and yield of few vegetable crops,” Int. J. Bio-resource Stress Manag, vol. 2, no. 1, pp. 125–130, 2011.

R. P. Meena, R. Sendhil, S. Tripathi, S. Chander, R. Chhokar, and R. Sharma, “Hydro-priming of seed improves the water use efficiency, grain yield and net economic return of wheat under different moisture regimes,” SAARC J. Agric, vol. 11, no. 2, pp. 149–159, 2014, doi: 10.3329/sja.v11i2.18410.

V. Heydecker, J. Higgins, and R. Gulliver, “Accelerated germination by osmotic seed treatment,” Nature, vol. 246, 1973.

M. B. McDonald, “Seed priming,” Seed Technol. its Biol. basis, pp. 287–325, 2000.

H. R. Rouhi, A. A. Surki, F. Sharif-Zadeh, R. T. Afshari, M. A. Aboutalebian, and G. Ahmadvand, “Study of different priming treatments on germination traits of soybean seed lots,” Not. Sci. Biol, vol. 3, no. 1, pp. 101–108, 2011.

A. A. Khan, “Preplant physiological seed conditioning,” Hortic. Rev. (Am. Soc. Hortic. Sci), vol. 13, no. 1, pp. 131–181, 1992.

H. A. Khan, C. M. Ayub, M. A. Pervez, R. M. Bilal, M. A. Shahid, and K. Ziaf, “Effect of seed priming with NaCI on salinity tolerance of hot pepper (Capsicum annuum L.) at seedling stage,” Soil Environ, vol. 28, no. 1, pp. 81–87, 2009.

A. Moeinzadeh, F. Sharif-Zadeh, M. Ahmadzadeh, and F. H. Tajabadi, “Biopriming of sunflower (‘Helianthus annuus’ L.) seed with’Pseudomonas fluorescens’ for improvement of seed invigoration and seedling growth,” Aust. J. Crop Sci, vol. 4, no. 7, pp. 564–570, 2010.

P. Halmer, “Seed technology and seed enhancement,” in XXVII International Horticultural Congress-IHC2006, 2006, pp. 17–26. doi: 10.17660/ActaHortic.2008.771.1.

W. Heydecker, J. Higgins, and Y. J. Turner, “Invigoration of seeds,” Seed Sci. Technol, vol. 3, no. 3/4, pp. 881–888, 1975.

C. A. Parera and D. J. Cantliffe, “Presowing seed priming,” Horticultural Reviews, vol. 16, no. 16. 1994. doi: 10.1002/9780470650561.ch4.

M. Ashraf and M. R. Foolad, “Pre-sowing seed treatment-a shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions,” Adv. Agron, vol. 88, pp. 223–271, 2005, doi: 10.1016/S0065-2113(05)88006-X.

A. D. Sharma, S. V. S. Rathore, K. Srinivasan, and R. K. Tyagi, “Comparison of various seed priming methods for seed germination, seedling vigour and fruit yield in okra (Abelmoschus esculentus L. Moench),” Sci. Hortic. (Amsterdam), vol. 165, pp. 75–81, 2014, doi: 10.1016/j.scienta.2013.10.044.

S. Fallah, S. Malekzadeh, and M. Pessarakli, “Seed priming improves seedling emergence and reduces oxidative stress in Nigella sativa under soil moisture stress,” J. Plant Nutr, vol. 41, no. 1, pp. 29–40, 2018.

S. J. Scott, R. A. Jones, and W. A. Williams, “Review of data analysis methods for seed germination 1,” Crop Sci, vol. 24, no. 6, pp. 1192–1199, 1984, doi: 10.2135/cropsci1984.0011183x002400060043x.

P. B. Tompsett and H. W. Pritchard, “The effect of chilling and moisture status on the germination, desiccation tolerance and longevity of Aesculus hippocastanum L. seed,” Ann. Bot, vol. 82, no. 2, pp. 249–261, 1998, doi: 10.1006/anbo.1998.0676.

A. A. Abdul‐Baki and J. D. Anderson, “Vigor determination in soybean seed by multiple criteria 1,” Crop Sci, vol. 13, no. 6, pp. 630–633, 1973.

X. W. Jiang, C. R. Zhang, W. H. Wang, G. H. Xu, and H. Y. Zhang, “Seed priming improves seed germination and seedling growth of Isatis indigotica fort. under salt stress,” HortScience, vol. 55, no. 5, pp. 647–650, 2020, doi: 10.21273/HORTSCI14854-20.

A. A. Bajwa, M. Farooq, and A. Nawaz, “Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.),” Physiol. Mol. Biol. Plants, vol. 24, no. 2, pp. 239–249, 2018, doi: 10.1007/s12298-018-0512-9.

M. Miransari and D. L. Smith, “Plant hormones and seed germination,” Environ. Exp. Bot, vol. 99, pp. 110–121, 2014, doi: 10.1016/j.envexpbot.2013.11.005.

J. P. Reichheld, T. Vernoux, F. Lardon, M. Van Montagu, and D. Inzé, “Specific checkpoints regulate plant cell cycle progression in response to oxidative stress,” Plant J, vol. 17, no. 6, pp. 647–656, 1999, doi: 10.1046/j.1365-313X.1999.00413.x.

R. Finkelstein, W. Reeves, T. Ariizumi, and C. Steber, “Molecular aspects of seed dormancy,” Annu. Rev. Plant Biol, vol. 59, pp. 387–415, 2008, doi: 10.1146/annurev.arplant.59.032607.092740.

S. P. C. Groot and C. M. Karssen, “Gibberellins regulate seed germination in tomato by endosperm weakening: a study with gibberellin-deficient mutants,” Planta, vol. 171, no. 4, pp. 525–531, 1987, doi: 10.1007/BF00392302.

A. Varier, A. K. Vari, and M. Dadlani, “The subcellular basis of seed priming,” Curr. Sci, pp. 450–456, 2010.

Y. Tian, B. Guan, D. Zhou, J. Yu, G. Li, and Y. Lou, “Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.),” Sci. World, vol. 2014, 2014, doi: 10.1155/2014/834630.

Published

2023-12-30

How to Cite

Balchhaudi, A. (2023). Enhancement of Okra (Abelmoschus esculentus L.) Germination through Seed Priming Techniques. Indonesian Journal of Agricultural Research, 6(2), 137 - 146. https://doi.org/10.32734/injar.v6i2.13660