Analysis of blanching and drying temperature on the physical characteristics of breadfruit chips during drying
DOI:
https://doi.org/10.32734/injar.v8i3.12599Keywords:
Breadfruit chip, drying kinetics, moisture ratioAbstract
This study evaluated how blanching regime and drying temperature influence moisture removal dynamics and dimensional changes in breadfruit chips. We dried breadfruit chips at 55 or 65 °C following one of three pretreatments: blanching at 40 °C for 15 min, blanching at 80 °C for 30 min, or no blanching. Raising drying temperature lowered the equilibrium moisture content (EMC) and shortened the time to reach it: at 55 °C, EMC stabilized at 6.94–17.03% after 840–1290 min; at 65 °C, EMC was 4.33–14.57% after 810–1050 min. Across both temperatures, mild blanching (40 °C, 15 min) consistently produced the highest drying rate, whereas no blanching or severe blanching (80 °C, 30 min) yielded the lowest rates. Shrinkage showed a similar tendency: at 55 °C, it was greatest after mild blanching and lowest after severe blanching; at 65 °C, it remained greatest with mild blanching but was lowest without blanching. These patterns suggest that mild blanching may open cellular pathways, enhancing water diffusion and promoting structural collapse, whereas harsher conditions or no blanching restrict mass transfer and limit shrinkage. Overall, elevating the temperature accelerated drying and reduced EMC, and blanching conditions strongly modulated both drying rate and product dimensions. From a processing standpoint, pretreatments should be selected to balance throughput with textural quality; for applications prioritizing rapid dehydration, mild blanching at 40 °C for 15 min is advantageous, whereas minimizing shrinkage may require either higher-temperature drying without blanching or carefully optimized, shorter blanching steps.
Downloads
References
[1] C. E. Turi, Y. Liu, D. Ragone, and S. J. Murch, “Breadfruit (Artocarpus spp.): A traditional crop with the potential to prevent hunger and mitigate diabetes in the tropics,” Trends Food Sci. Technol., vol. 45, no. 2, pp. 264–272, 2015, doi:10.1016/j.tifs.2015.07.014.
[2] K. A. Mehta, Y. C. R. Quek, and C. J. Henry, “Breadfruit (Artocarpus altilis): Processing, nutritional quality, and food applications,” Front. Nutr., vol. 10, 1156155, 2023, doi:10.3389/fnut.2023.1156155.
[3] R. O. Lamidi, L. Jiang, P. B. Pathare, Y. D. Wang, and A. P. Roskilly, “Recent advances in sustainable drying of agricultural produce: A review,” Appl. Energy, vols. 233–234, pp. 367–385, 2019, doi:10.1016/j.apenergy.2018.10.044.
[4] U. E. Inyang, I. O. Oboh, and B. R. Etuk, “Kinetic models for drying techniques—Food materials,” Adv. Chem. Eng. Sci., vol. 8, no. 2, pp. 27–48, 2018, doi:10.4236/aces.2018.82003.
[5] Y. I. Sharaf-Eldeen, J. L. Blaisdell, and M. Y. Hamdy, “Model for ear corn drying,” Trans. ASAE, vol. 23, no. 5, pp. 1261–1266, 1980, doi:10.13031/2013.34757.
[6] B. K. Bala and J. L. Woods, “Thin layer drying models for malt,” J. Food Eng., vol. 16, no. 4, pp. 239–249, 1992, doi:10.1016/0260-8774(92)90001-M.
[7] M. Özdemir and Y. O. Devres, “Thin layer drying characteristics of hazelnuts during roasting,” J. Food Eng., vol. 42, no. 4, pp. 225–233, 1999, doi:10.1016/S0260-8774(99)00126-0.
[8] G. Mazza and M. Le Maguer, “Dehydration of onion: Some theoretical and practical considerations,” Int. J. Food Sci. Technol., vol. 15, no. 2, pp. 181–194, 1980, doi:10.1111/j.1365-2621.1980.tb00930.x.
[9] C. Suarez, P. Viollaz, and J. Chirife, “Diffusional analysis of air drying of grain sorghum,” Int. J. Food Sci. Technol., vol. 15, no. 5, pp. 523–531, 1980, doi:10.1111/j.1365-2621.1980.tb00971.x.
[10] H.-W. Xiao, Z. Pan, L.-Z. Deng, H. M. El-Mashad, X.-H. Yang, A. S. Mujumdar, Z.-J. Gao, and Q. Zhang, “Recent developments and trends in thermal blanching: A comprehensive review,” Inf. Process. Agric., vol. 4, no. 2, pp. 101–127, 2017, doi:10.1016/j.inpa.2017.02.001.
[11] R. Moscetti, F. Raponi, D. Monarca, G. Bedini, S. Ferri, and R. Massantini, “Effects of hot-water and steam blanching of sliced potato on polyphenol oxidase activity,” Int. J. Food Sci. Technol., vol. 54, no. 2, pp. 403–411, 2019, doi:10.1111/ijfs.13951.
[12] T. A. B. B. Cavalcante, E. dos S. Funcia, and J. A. W. Gut, “Inactivation of polyphenol oxidase by microwave and conventional heating: Investigation of thermal and non-thermal effects of focused microwaves,” Food Chem., vol. 340, p. 127911, 2021, doi:10.1016/j.foodchem.2020.127911.
[13] D. A. Mayor and A. M. Sereno, “Modelling shrinkage during convective drying of food materials: A review,” J. Food Eng., vol. 61, no. 3, pp. 373–386, 2004, doi:10.1016/S0260-8774(03)00144-4.
[14] M. Mahiuddin, M. I. H. Khan, C. Kumar, M. M. Rahman, and M. A. Karim, “Shrinkage of food materials during drying: Current status and challenges,” Compr. Rev. Food Sci. Food Saf., vol. 17, no. 5, pp. 1113–1126, 2018, doi:10.1111/1541-4337.12375.
[15] F. Piñaga, J. V. Carbonell, J. L. Peña, and J. J. Miquel, “Experimental simulation of solar drying of garlic using an adsorbent energy storage bed,” J. Food Eng., vol. 3, no. 3, pp. 187–203, 1984, doi:10.1016/0260-8774(84)90020-7.
[16] L. R. Verma, R. A. Bucklin, J. B. Endan, and F. T. Wratten, “Effects of drying air parameters on rice drying models,” Trans. ASAE, vol. 28, no. 1, pp. 296–301, 1985, doi:10.13031/2013.32245.
[17] George, Camille & Mogil, Quinn & Andrews, Michaela & Ewing, George, ”Thin layer drying curves for shredded breadfruit (Artocarpus altilis),” Journal of Food Processing and Preservation, 41, 2016, doi:10.1111/jfpp.13146
[18] A. Kumar, K. N. Mishra, and P. Singh, “Computational modelling for decarbonised drying of agricultural products: A review,” J. Food Eng., vol. 330, p. 111113, 2022, doi:10.1016/j.jfoodeng.2022.111113.
[19] M. Adnouni, L. Jiang, X. J. Zhang, L. Z. Zhang, P. B. Pathare, and A. P. Roskilly, “Computational modelling for decarbonised drying of agricultural products: Sustainable processes, energy efficiency, and quality improvement,” J. Food Eng., vol. 338, p. 111247, 2023, doi:10.1016/j.jfoodeng.2022.111247.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Indonesian Journal of Agricultural Research

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.














