Evaluation of Yield Attributing Trait of Spring Wheat Genotypes Under Normal and Late Sowing Condition

Authors

  • Sushil Jaisi Institute of Agriculture and Animal Science, Tribhuvan University, Nepal
  • Asha Thapa Institute of Agriculture and Animal Science, Tribhuvan University, Nepal
  • Mukti Ram Poudel Institute of Agriculture and Animal Science, Tribhuvan University, Nepal

DOI:

https://doi.org/10.32734/injar.v5i01.6504

Keywords:

grain yield, heat stress, trait, wheat, Nepal

Abstract

Wheat (Triticum aestivum) is the third most important cereal crop in Nepal after rice and maize. The research is carried out during the winter season in agronomic field of the Institute of Agriculture and Animal Science (IAAS), Bhairahawa, Nepal. Sowing is carried out 28th November 2020 and 24th December 2020 on alpha lattice design with two replication of twenty wheat genotype under normal and late sowing respectively. In the late sowing condition, all genotype's performance is reduced as compared to normal sowing. Under late sown condition, high temperatures reduced the days to booting (15.64%), days to heading (14.97%), days to maturity (14.16%), chlorophyll content (15.99%), plant height (8.59%), spike length (7.03%), number of spikelet per spike (9.21%), number of grain per spike (10.6%), spike weight (15.32%), effective tiller/m2 (9.92%), thousand kernel weight (10.3%) and grain yield (22.5%). NL 1420 presented higher 4118 kg/ha and 3310.5 kg/ha yield respectively and BL 4407 presented early maturity 119.2 DAS and 100.6 DAS respectively in normal sowing and late sowing condition. In a combined environment, maximum grain yield is recorded in NL1420. The result suggested that the tolerant line against the late sowing condition can be used as genetic resource for crop improvement and promote for grain yield.

Downloads

Download data is not yet available.

References

REFERENCES

FAO, “Food and Agriculture Organization of the United Nations,” 2019. [Online]. Available: http://www.fao.org/faostat/en/#data/QC.

I. Sharma, B. S. Tyagi, G. Singh, K. Venkatesh, and O. Gupta, “Enhancing wheat production - A global perspective,” Indian J. Agric. Sci., vol. 85, no. 1, pp. 3-33, 2015.

P. Kumar, R. Yadava, B. Gollen, S. Kumar, R. Verma, and S. Yadav, “Nutritional contents and medicinal properties of wheat: A review,” Life Sci. Med. Res., vol. 2011, no. 1, p. 22, 2011.

Ministry of Agriculture and Livestock Development Nepal, Krishi Tatha Pashupanchi Mantralaya, 2019. [Online]. Available: https://aitc.gov.np/english/downloadsdetail/2/2019/19794382/.

MoALMC [Ministry of Agriculture, Land Management, and Cooperatives, Kathmandu], Statistical information on Nepalese agriculture 2073/74 (2016/17). Nepal: MoALMC, 2018.

R. R. Puri, S. Tripathi, R. Bhattarai, S. R. Dangi, and D. Pandey, “Wheat variety improvement for climate resilience,” Asian J. Res. Agric. For., vol. 6, no. 2, pp. 21-27, 2020, doi: 10.9734/ajraf/2020/v6i230101.

I. F. Wardlaw, I. A. Dawson, P. Munibi, and R. Fewster, “The tolerance of wheat to high temperatures during reproductive growth. I. Survey procedures and general response patterns,” Aust. J. Agric. Res., vol. 40, no. 1, pp. 1-13, 1989, doi: 10.1071/AR9890001.

M. R. Poudel, S. Ghimire, M. P. Pandey, K. H. Dhakal, and D. B. Thapa, “Evaluation of wheat genotypes under irrigated, heat stress and drought conditions,” J Biol Today’s World, vol. 9, no. 1, pp. 1-12, 2020.

N. Senapati, P. Stratonovitch, M. J. Paul, and M. A. Semenov, “Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe,” Journal of Experimental Botany, vol. 70, no. 9, pp. 2549–2560, 2019, doi: 10.1093/jxb/ery226.

T. Oshino et al., “Auxin depletion in barley plants under high-temperature conditions represses DNA proliferation in organelles and nuclei via transcriptional alterations,” Plant, Cell Environ., vol. 34, no. 2, pp. 284-290, 2011, doi: 10.1111/j.1365-3040.2010.02242.x.

M. F. Qaseem, R. Qureshi, and H. Shaheen, “Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum L.) genotypes varying in sensitivity to heat and drought stress,” Sci. Rep., vol. 9, no. 1, pp. 1-12, 2019, doi: 10.1038/s41598-019-43477-z.

P. B. Poudel, U. K. Jaishi, L. Poudel, and M. R. Poudel, “Evaluation of wheat genotypes under normal and late sowing conditions,” Int. J. Appl. Sci. Biotechnol., vol. 8, no. 2, pp. 161-169, 2020, doi: 10.3126/ijasbt.v8i2.29593.

A. Hossain, J. da Silva, M. Lozovskaya, and V. Zvolinsky, “The effect of high temperature stress on the phenology, growth, and yield of five wheat (Triticum aestivum L.) varieties,” Asian Australas. J. Plant Sci. Biotechnol., vol. 6, no. 1, pp. 14-23, 2012.

N. Tarchoun, M. M'Hamdi, and J. A. T. da Silva, “Approaches to evaluate the abortion of hot pepper floral structures induced by low night temperature,” Eur. J. Hortic. Sci., vol. 77, no. 2, pp. 78-83, 2012.

N. Akter and M. R. Islam, “Heat stress effects and management in wheat. A review,” Agron. Sustain. Dev, vol. 37, no. 5, pp. 1-17, 2017, doi: 10.1007/s13593-017-0443-9.

F. Álvaro, J. Isidro, D. Villegas, L. F. García Del Moral, and C. Royo, “Breeding effects on grain filling, biomass partitioning, and demobilization in Mediterranean durum wheat,” Agron. J., vol. 100, no. 2, pp. 361-370, 2008, doi: 10.2134/agronj2007.0075.

Y. Yamamoto et al., “Quality control of photosystem II: Impact of light and heat stresses,” Photosynth. Res., vol. 98, no. 1-3, pp. 589-608, 2008, doi: 10.1007/s11120-008-9372-4.

X. Yin, W. Guo, and J. Spiertz, “A quantitative approach to character-ize sink-source relationships during grain filling in contrasting wheat genotypes,” F. Crop. Res, vol. 114, pp. 119-126, 2009, doi:10.1016/j.fcr.2009. 07.013.

P. V. V. Prasad, S. R. Pisipati, Z. Ristic, U. Bukovnik, and A. K. Fritz, “Impact of nighttime temperature on physiology and growth of spring wheat,” Crop Sci., vol. 48, no. 6, pp. 2372-2380, 2008, doi: 10.2135/cropsci2007.12.0717.

W. Song et al., “Effect of timing of heat stress during grain filling in two wheat varieties under moderate and very high temperature,” Indian. J Genet, vol. 75, no. 1, pp. 121-124, 2015, doi: 10.5958/0975–6906.2015.00018.8.

K. Balla, S. Bencze, T. Janda, and O. Veisz, “Analysis of heat stress tolerance in winter wheat,” Acta Agron. Hungarica, vol. 57, no. 4, pp. 437-444, 2009, doi: 10.1556/AAgr.57.2009.4.6.

D. Jespersen, J. Zhang, and B. Huang, “Chlorophyll loss associated with heat-induced senescence in bentgrass,” Plant Sci., vol. 249, pp. 1-12, 2016, doi: 10.1016/j.plantsci.2016.04.016.

Z. Cao et al., “Comparison of the abilities of vegetation indices and photosynthetic parameters to detect heat stress in wheat,” Agric. For. Meteorol., vol. 265, no. July 2018, pp.121-136, 2019, doi: 10.1016/j.agrformet.2018.11.009.

K. Dhyani, M. W. Ansari, Y. R. Rao, R. S. Verma, A. Shukla, and N. Tuteja, “Comparative physiological response of wheat genotypes under terminal heat stress,” Plant Signal. Behav., vol. 8, no. 6, pp. 37–41, 2013, doi: 10.4161/psb.24564.

S. Mathur, D. Agrawal, and A. Jajoo, “Photosynthesis: response to high temperature stress,” J. Photochem. Photobiol. B Biol., vol. 137, pp. 116-126, 2014, doi: 10.1016/j.jphotobiol.2014.01.010.

A. Sattar, M. A. Cheema, M. Farooq, M. A. Wahid, A. Wahid, and B. H. Babar, “Evaluating the performance of wheat cultivars under late sown conditions,” Int. J. Agric. Biol., vol. 12, no. 4, pp. 561–565, 2010.

A. Singh, D. Singh, J. S. Kang, and N. Aggarwal, “Management practices to mitigate the impact of high temperature on wheat: A Review,” IIOAB J., vol. 2, no. 7, pp. 11–22, 2011.

A. Bagga and H. Rawson, “Contrasting responses of morphologically similar wheat cultivars to temperatures appropriate to warm temperature climates with hot summers: A study in controlled environment,” Funct Plant Biol, vol. 4, no. 6, pp. 877–887, 1997.

L. Chen et al., “Effects of Vrn-B1 and Ppd-D1 on developmental and agronomic traits in Rht5 dwarf plants of bread wheat,” F. Crop. Res., vol. 219, pp. 24–32, 2018, doi: 10.1016/j.fcr.2018.01.022.

M. Qasim, M. Qamer, M. Alam, and M. Alam, “Sowing dates effect on yield and yield components of different wheat varieties,” J. Agric. Res., vol. 46, no. 2, pp. 135-140, 2008.

D. Mukherjee, “Effect of different sowing dates on growth and yield of wheat (Triticum aestivum) cultivars under mid hill situation of West Bengal,” Indian J. Agron., vol. 57, no. 2, pp. 152-156, 2012.

M. S. Baloch, M. A. Nadim, M. Zubair, I. U. Awan, E. A. Khan, and S. Ali, “Evaluation of wheat under normal and late sowing conditions,” Pakistan J. Bot., vol. 44, no. 5, pp. 1727-1732, 2012.

R. Valluru, M. P. Reynolds, W. J. Davies, and S. Sukumaran, “Phenotypic and genome-wide association analysis of spike ethylene in diverse wheat genotypes under heat stress,” New Phytol., vol. 214, no. 1, pp. 271-283, 2017, doi: 10.1111/nph.14367.

A. J. B. Pimentel, J. R. do A. S. de Carvalho Rocha, M. A. de Souza, G. Ribeiro, C. R. Silva, and I. C. M. Oliveira, “Characterization of heat tolerance in wheat cultivars and effects on production components,” Rev. Ceres, vol. 62, no. 2, pp. 191-198, 2015, doi: 10.1590/0034-737X201562020009.

M. A. Semenov, “Impacts of climate change on wheat in England and Wales,” J. R. Soc. Interface, vol. 6, no. 33, pp. 343-350, 2009, doi: 10.1098/rsif.2008.0285.

V. Kaur and R. Behl, “Grain yield in wheat as affected by short periods of high temperature, drought, and their interaction during pre- and post-anthesis stages,” Cereal Res. Commun., vol. 38, no. 4, pp. 514-520, 2010, doi: 10.1556/CRC.38.2010.4.8.

A. Hedhly, J. I. Hormaza, and M. Herrero, “Global warming and sexual plant reproduction,” Trends Plant Sci., vol. 14, no. 1, pp. 30-36, 2009, doi: 10.1016/j.tplants.2008.11.001.

R. Motzo, F. Giunta, and M. Deidda, “Expression of a tiller inhibitor gene in the progenies of interspecific crosses Triticum aestivum L. x T. turgidum subsp. durum,” F. Crop. Res., vol. 85, no. 1, pp. 15-20, 2004, doi: 10.1016/S0378-4290(03)00123-0.

J. A. Palta, I. R. P. Fillery, and G. J. Rebetzke, “Restricted-tillering wheat does not lead to greater investment in roots and early nitrogen uptake,” F. Crop. Res., vol. 104, no. 1–3, pp. 52-59, 2007, doi: 10.1016/j.fcr.2007.03.015.

D. Dilmurodovich, B. N. Bekmurodovich, K. N. Shakirjonovich, and A. Shomiljonovichs, S. Raxmatullaevich, “Productivity, quality, and technological characteristics of bread wheat (Triticum aestivum L.) variety and lines for the southern regions of the republic of Uzbekistan,” PLANT CELL Biotechnol. Mol. Biol., vol. 27, no. 7-8, pp. 63–74, 2021.

H. Aberkane et al., “Evaluation of durum wheat lines derived from interspecific crosses under drought and heat stress,” Crop Sci., vol. 61, no. 1, pp. 119-136, 2021, doi: 10.1002/csc2.20319.

A. S. Dias, A. S. Bagulho, and F. C. Lidon, “Ultrastructure and biochemical traits of bread and durum wheat grains under heat stress,” Brazilian J. Plant Physiol., vol. 20, no. 4, pp. 323-333, 2008, doi: 10.1590/s1677-04202008000400008.

X. Ji et al., “Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat,” Plant, Cell Environ., vol. 33, no. 6, pp. 926-942, 2010, doi: 10.1111/j.1365-3040.2010.02130.x.

D. B. Hays, J. H. Do, R. E. Mason, G. Morgan, and S. A. Finlayson, “Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar,” Plant Sci., vol. 172, no. 6, pp. 1113-1123, 2007, doi: 10.1016/j.plantsci.2007.03.004.

Z. Plaut, B. J. Butow, C. S. Blumenthal, and C. W. Wrigley, “Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature,” F. Crop. Res., vol. 86, no. 2–3, pp. 185-198, 2004, doi: 10.1016/j.fcr.2003.08.005.

S. Schittenhelm, T. Langkamp-Wedde, M. Kraft, L. Kottmann, and K. Matschiner, “Effect of two-week heat stress during grain filling on stem reserves, senescence, and grain yield of European winter wheat cultivars,” J. Agron. Crop Sci., vol. 206, no. 6, pp. 722-733, 2020, doi: 10.1111/jac.12410.

A. Hossain and J. A. T. da Silva, “Phenology, growth, and yield of three wheat (Triticum aestivum L.) varieties as affected by high temperature stress,” Not. Sci. Biol., vol. 4, no. 3, pp. 97–109, 2012, [Online]. Available: https://notulaebiologicae.ro/index.php/nsb/article/view/7879/8440.

Published

2023-01-10

How to Cite

Jaisi, S., Thapa, A., & Poudel, M. R. (2023). Evaluation of Yield Attributing Trait of Spring Wheat Genotypes Under Normal and Late Sowing Condition. Indonesian Journal of Agricultural Research, 5(1), 50 - 66. https://doi.org/10.32734/injar.v5i01.6504