Green Synthesis of Barium Doped Titanium Dioxide Using Palm Leaf Extract (Elaeis guineensis Jacq.)

Authors

  • Andriayani Andriayani Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, 20155, Indonesia
  • Henny Dumarta Hutapea Postgraduate School of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, 20155, Indonesia
  • Muhammad Taufik Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia

DOI:

https://doi.org/10.32734/jcnar.v7i1.20178

Keywords:

Barium Doping, Environmentally Friendly, Green Synthesis, Titanium Dioxide

Abstract

Conventional synthesis of titanium dioxide (TiO₂) nanoparticles often involves the use of toxic chemicals, high costs, and extreme operating conditions. This research aims to develop a cost-effective and environmentally friendly green synthesis method for TiO₂ by utilizing oil palm leaf (Elaeis guineensis Jacq.) extract as a reducing and stabilizing agent. Subsequently, doping with barium (Ba) was carried out to enhance the photocatalytic, optical, and electrical properties of the resulting TiO₂. Phytochemical analysis revealed that oil palm leaf extract contains alkaloids, flavonoids, terpenoids, saponins, and tannins, which play a role in the reduction and stabilization processes of TiO₂ nanoparticles. Characterization using Fourier Transform Infrared Spectroscopy (FTIR) identified Ti-O bonds in pure TiO₂ at a wavenumber of 588 cm⁻¹, and a shift in absorption peaks in the range of 548-595 cm⁻¹ in Ba-doped TiO₂ indicated the formation of the barium titanate phase. X-ray Diffraction (XRD) analysis showed that Ba doping increased the crystallite size of TiO₂ from 1.17 nm to 1.65 nm, which may have implications for photocatalytic applications.

Downloads

Download data is not yet available.

References

W. Ahmad, K. K. Jaiswal, and S. Soni, “Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties,” Inorg. Nano-Metal Chem., vol. 50, no. 10, pp. 1032–1038, 2020, doi: 10.1080/24701556.2020.1732419.

A. Ansari et al., “Correction: Green Synthesis of TiO2 Nanoparticles Using Acorus calamus Leaf Extract and Evaluating Its Photocatalytic and In Vitro Antimicrobial Activity (Catalysts, (2022), 12, (181), 10.3390/catal12020181),” Catalysts, vol. 12, no. 11, 2022, doi: 10.3390/catal12111451.

J. M. Abisharani, S. Devikala, R. Dinesh Kumar, M. Arthanareeswari, and P. Kamaraj, “Green synthesis of TiO2 nanoparticles using Cucurbita pepo seeds extract,” Mater. Today Proc., vol. 14, pp. 302–307, 2019, doi: 10.1016/j.matpr.2019.04.151.

M. Aslam, A. Z. Abdullah, and M. Rafatullah, “Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications,” J. Ind. Eng. Chem., vol. 98, pp. 1–16, 2021, doi: 10.1016/j.jiec.2021.04.010.

A. Saka et al., “Biosynthesis of TiO2 nano particles by using Rosemary (Rosmarinus officinalis) leaf extracts and its application for crystal dye degradation under sunlight,” BMC Chem., vol. 18, no. 1, pp. 1–11, 2024, doi: 10.1186/s13065-024-01229-9.

G. Nabi et al., “Green synthesis of TiO2 nanoparticles using lemon peel extract: their optical and photocatalytic properties,” Int. J. Environ. Anal. Chem., vol. 102, no. 2, pp. 434–442, 2022, doi: 10.1080/03067319.2020.1722816.

N. K. Sethy, Z. Arif, P. K. Mishra, and P. Kumar, “Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater,” Green Process. Synth., vol. 9, no. 1, pp. 171–181, 2020, doi: 10.1515/gps-2020-0018.

W. M. Alarif et al., “Green Synthesis of TiO2 Nanoparticles Using Natural Marine Extracts for Antifouling Activity,” Mar. Drugs, vol. 21, no. 2, 2023, doi: 10.3390/md21020062.

R. Saini and P. Kumar, “Green synthesis of TiO2 nanoparticles using Tinospora cordifolia plant extract & its potential application for photocatalysis and antibacterial activity,” Inorg. Chem. Commun., vol. 156, no. July, 2023, doi: 10.1016/j.inoche.2023.111221.

N. E. Sunny et al., “Green synthesis of titanium dioxide nanoparticles using plant biomass and their applications- A review,” Chemosphere, vol. 300, no. March, 2022, doi: 10.1016/j.chemosphere.2022.134612.

T. Ahmad, M. A. Bustam, M. Irfan, M. Moniruzzaman, H. M. Anwaar Asghar, and S. Bhattacharjee, “Green synthesis of stabilized spherical shaped gold nanoparticles using novel aqueous Elaeis guineensis (oil palm) leaves extract,” J. Mol. Struct., vol. 1159, pp. 167–173, 2018, doi: 10.1016/j.molstruc.2017.11.095.

S. E. Putri et al., “Effect of Elaeis guineensis Jacq. Leaf extracts concentration in the optical, structure, morphology analysis of titanium dioxide nanoparticles,” Results in Surfaces and Interfaces, vol. 18, no. October 2024, p. 100391, 2025, doi: 10.1016/j.rsurfi.2024.100391.

S. A. Korde, P. B. Thombre, S. S. Dipake, J. N. Sangshetti, A. S. Rajbhoj, and S. T. Gaikwad, “Neem gum (Azadirachta indicia) facilitated green synthesis of TiO2 and ZrO2 nanoparticles as antimicrobial agents,” Inorg. Chem. Commun., vol. 153, no. August 2022, 2023, doi: 10.1016/j.inoche.2023.110777.

D. R. Eddy et al., “A review of recent developments in green synthesis of TiO2 nanoparticles using plant extract: Synthesis, characterization and photocatalytic activity,” Inorg. Chem. Commun., vol. 165, no. May, p. 112531, 2024, doi: 10.1016/j.inoche.2024.112531.

S. Mugundan et al., “Sol-gel synthesized barium doped TiO2 nanoparticles for solar photocatalytic application,” Inorg. Chem. Commun., vol. 139, no. October 2021, p. 109340, 2022, doi: 10.1016/j.inoche.2022.109340.

M. Ramzan, R. M. Obodo, M. I. Shahzad, S. Mukhtar, S. Z. Ilyas, and T. Mahmood, “Green synthesis of Cu@TiO2 via cedrus deodara leaf extract: A novel composite with high photocatalytic and antibacterial activity,” Curr. Res. Green Sustain. Chem., vol. 4, no. June, p. 100137, 2021, doi: 10.1016/j.crgsc.2021.100137.

T. Z. Liza, M. M. H. Tusher, F. Anwar, M. F. Monika, K. F. Amin, and F. N. U. Asrafuzzaman, “Effect of Ag-doping on morphology, structure, band gap and photocatalytic activity of bio-mediated TiO2 nanoparticles,” Results Mater., vol. 22, no. June 2023, p. 100559, 2024, doi: 10.1016/j.rinma.2024.100559.

A. H. Yuwono et al., “Investigation of methylene blue dye degradation using green synthesized mesoporous silver-titanium,” South African J. Chem. Eng., vol. 50, no. February, pp. 415–426, 2024, doi: 10.1016/j.sajce.2024.09.012.

I. S. Saputra et al., “Bi2Ce2O7 nanoparticles synthesized using Elaeis guineensis Jacq. Leaf extracts and its potential for photocatalytic application,” Vacuum, vol. 230, no. August, p. 113661, 2024, doi: 10.1016/j.vacuum.2024.113661.

S. Shakir, H. M. Abd-ur-Rehman, K. Yunus, M. Iwamoto, and V. Periasamy, “Fabrication of un-doped and magnesium doped TiO2 films by aerosol assisted chemical vapor deposition for dye sensitized solar cells,” J. Alloys Compd., vol. 737, pp. 740–747, 2018, doi: 10.1016/j.jallcom.2017.12.165.

R. Saini and P. Kumar, “Green synthesis of TiO2 nanoparticles using Tinospora cordifolia plant extract & its potential application for photocatalysis and antibacterial activity,” Inorg. Chem. Commun., vol. 156, no. August, p. 111221, 2023, doi: 10.1016/j.inoche.2023.111221.

N. E. Sunny et al., “Green synthesis of titanium dioxide nanoparticles using plant biomass and their applications- A review,” Chemosphere, vol. 300, no. April, p. 134612, 2022, doi: 10.1016/j.chemosphere.2022.134612.

K. Vijayalakshmi and D. Sivaraj, “Synergistic antibacterial activity of barium doped TiO2 nanoclusters synthesized by microwave processing,” RSC Adv., vol. 6, no. 12, pp. 9663–9671, 2016, doi: 10.1039/c5ra28125c.

I. C. Maurya, S. Singh, S. Senapati, P. Srivastava, and L. Bahadur, “Green synthesis of TiO2 nanoparticles using Bixa orellana seed extract and its application for solar cells,” Sol. Energy, vol. 194, no. October, pp. 952–958, 2019, doi: 10.1016/j.solener.2019.10.090.

S. Mugundan et al., “Sol-gel synthesized barium doped TiO2 nanoparticles for solar photocatalytic application,” Inorg. Chem. Commun., vol. 139, no. October 2021, 2022, doi: 10.1016/j.inoche.2022.109340.

B. Shahmoradi et al., “Synthesis and characterization of barium-doped TiO2 nanocrystals for photocatalytic degradation of acid red 18 under solar irradiation,” Desalin. Water Treat., vol. 88, pp. 200–206, 2017, doi: 10.5004/dwt.2017.21424.

A. Badawi, M. G. Althobaiti, S. S. Alharthi, and A. M. Al-Baradi, “Tailoring the optical properties of CdO nanostructures via barium doping for optical windows applications,” Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 411, p. 127553, 2021, doi: 10.1016/j.physleta.2021.127553.

A. Ahmad, S. Khan, M. Khan, R. Luque, M. Jalalah, and M. A. Alsaiari, “Microwave Assisted Preparation of Barium Doped Titania (Ba/TiO2) as Photoanode in Dye Sensitized Solar Cells,” Appl. Sci., vol. 12, no. 18, 2022, doi: 10.3390/app12189280.

Downloads

Published

2025-06-02