Exploring the Effect of Ethylenediamine Concentration on the Optical Properties of Carbon Dots Synthesized from Candlenut Shell Biomass

Authors

  • Marpongahtun Marpongahtun Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, 20155, Indonesia
  • Tjut Siti Safhura Postgraduate School of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sumatera Utara, Medan, 20155, Indonesia
  • Amir Hamzah Siregar Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, 20155, Indonesia

DOI:

https://doi.org/10.32734/jcnar.v7i1.20639

Keywords:

Carbon Dots, Candlenut Shells, Hydrothermal Method, Dopant, Ethylenediamine

Abstract

Carbon dots are fluorescent nanomaterials with a size below 10 nm, known for their good optical properties, including fluorescence emission and biocompatibility which are very suitable for various applications, such as bioimaging, sensors and optoelectronics. This research aims to synthesize CDs and NCDs from candlenut shells as a biomass source using the hydrothermal method at 230°C for 6 hours with the addition of ethylenediamine (EDA) as a nitrogen dopant at concentrations of 4%, 8% and 12% (v/v). The study also evaluates the effect of varying EDA concentrations on the optical properties of CDs and NCDs. Based on the results, under 365 nm UV irradiation, all samples showed bluish green fluorescence. The results of UV-Vis analysis showed an absorption peak at a wavelength of 271 nm for CDs and additional absorption peaks at 274 nm and 324 nm for NCDs, corresponding to the π–π* and n–π* transitions, respectively. Increasing EDA concentration is associated with a gradual decrease in the absorption intensity of CDs and NCDs. The photoluminescence results showed the CDs emission peak at 494 nm with a quantum yield (QY) of 18% and the strongest fluorescence at 498 nm for NCDs 8% with the highest QY of 27%. The results of FTIR analysis showed -OH, C=O and C=N functional groups in all samples and additional -NH functional groups in the NCDs, indicating successful nitrogen incorporation.

Downloads

Download data is not yet available.

References

C. Ren, C. Tian, M. Zhang, F. Li, Y. Li, F. Zhang, J. Zhang, G. Chen, J. Tang, The fluorescence properties of nitrogen-doped carbon dots by microwave green approaches, J. Mol. Struct. 1319 (2025) 139364. https://doi.org/10.1016/j.molstruc.2024.139364.

V. Kansay, V.D. Sharma, G. Chandan, I. Sharma, A. Bhatia, S. Chakrabarti, M.K. Bera, Sustainable synthesis and characterization of fluorescent nanoprobe based on unintentional heteroatom doped-carbon quantum dots for bioimaging of human neuroblastoma cancer cells and living organisms, J. Photochem. Photobiol. A Chem. 443 (2023) 114879. https://doi.org/10.1016/j.jphotochem.2023.114879.

A. Imran, F. Ahmed, Y.A. Ali, M.S. Naseer, K. Sharma, Y.S. Bisht, A.H. Alawadi, U. Shehzadi, F. Islam, M.A. Shah, A comprehensive review on carbon dot synthesis and food applications, J. Agric. Food Res. 21 (2025) 101847. https://doi.org/10.1016/j.jafr.2025.101847.

L. Wang, C. Gu, L. Wu, W. Tan, Z. Shang, Y. Tian, J. Ma, Recent advances in carbon dots for electrochemical sensing and biosensing: A systematic review, Microchem. J. 207 (2024) 111687. https://doi.org/10.1016/j.microc.2024.111687.

B. Wang, H. Cai, G.I.N. Waterhouse, X. Qu, B. Yang, S. Lu, Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review, Small Sci. 2 (2022). https://doi.org/10.1002/smsc.202200012.

N.A. Abdullah, H.E. Mahmoud, N.A. El-Nikhely, A.A. Hussein, L.K. El-Khordagui, Carbon dots labeled Lactiplantibacillus plantarum: a fluorescent multifunctional biocarrier for anticancer drug delivery, Front. Bioeng. Biotechnol. 11 (2023) 1–17. https://doi.org/10.3389/fbioe.2023.1166094.

G. Gedda, S.A. Sankaranarayanan, C.L. Putta, K.K. Gudimella, A.K. Rengan, W.M. Girma, Green synthesis of multi-functional carbon dots from medicinal plant leaves for antimicrobial, antioxidant, and bioimaging applications, Sci. Rep. 13 (2023) 1–9. https://doi.org/10.1038/s41598-023-33652-8.

H. Zhang, G. Wang, Z. Zhang, J.H. Lei, T.M. Liu, G. Xing, C.X. Deng, Z. Tang, S. Qu, One step synthesis of efficient red emissive carbon dots and their bovine serum albumin composites with enhanced multi-photon fluorescence for in vivo bioimaging, Light Sci. Appl. 11 (2022). https://doi.org/10.1038/s41377-022-00798-5.

R. Atchudan, S. Chandra Kishore, P. Gangadaran, T.N. Jebakumar Immanuel Edison, S. Perumal, R.L. Rajendran, M. Alagan, S. Al-Rashed, B.C. Ahn, Y.R. Lee, Tunable fluorescent carbon dots from biowaste as fluorescence ink and imaging human normal and cancer cells, Environ. Res. 204 (2022) 112365. https://doi.org/10.1016/j.envres.2021.112365.

M. Marpongahtun, R. Pramudita, S. Gea, A. Daulay, Synthesis of Carbon Dots From Empty Fruit Bunch Biochar an Acid-Free Hydrothermal Method, Elkawnie 9 (2023) 61. https://doi.org/10.22373/ekw.v9i1.14524.

M. Kumar, S. Chinnathambi, N. Bakhori, N. Abu, F. Etezadi, V. Thangavel, D. Packwood, E. Sivaniah, G.N. Pandian, Biomass-derived carbon dots as fluorescent quantum probes to visualize and modulate inflammation, Sci. Rep. 14 (2024) 1–12. https://doi.org/10.1038/s41598-024-62901-7.

J. Goswami, H. Barman, P. Hazarika, P. Manna, A. Devi, L. Saikia, Biomass-derived phosphorous-doped carbon quantum dots (P-CQD): An excellent biocompatible material for in-vitro cell imaging, Inorg. Chem. Commun. 162 (2024) 112276. https://doi.org/10.1016/j.inoche.2024.112276.

D. Nurdiati, Astuti, Sintesis Komposit PAni / Karbon dari Tempurung Kemiri ( Aleurites moluccana ) Sebagai Elektroda Kapasitor, J. Fis. Unand 4 (2015) 51–57.

R.K. Dewi, M.I. Hudha, A. Rauda, S. Tsulusia, Chemical and Physical Process Combinations: Microwave in Lignin Degradation of Pecan Shells as Alternative Fuel Raw Materials, 1 (2020) 63–67. https://doi.org/10.2991/snk-19.2019.16.

M. Desa, D. Selatan, K. Gorontalo, Insan Cita, 7 (2025) 761–773.

M. El-Azazy, A.I. Osman, M. Nasr, Y. Ibrahim, N. Al-Hashimi, K. Al-Saad, M.A. Al-Ghouti, M.F. Shibl, A.H. Al-Muhtaseb, D.W. Rooney, A.S. El-Shafie, The interface of machine learning and carbon quantum dots: From coordinated innovative synthesis to practical application in water control and electrochemistry, Coord. Chem. Rev. 517 (2024) 215976. https://doi.org/10.1016/j.ccr.2024.215976.

N. Prathap, P. Balla, M.S. Shivakumar, G. Periyasami, P. Karuppiah, K. Ramasamy, S. Venkatesan, Prosopis juliflora hydrothermal synthesis of high fluorescent carbon dots and its antibacterial and bioimaging applications, Sci. Rep. 13 (2023) 1–11. https://doi.org/10.1038/s41598-023-36033-3.

Y. Xu, D. Li, M. Liu, F. Niu, J. Liu, E. Wang, Enhanced-quantum yield sulfur/nitrogen co-doped fluorescent carbon nanodots produced from biomass Enteromorpha prolifera: Synthesis, posttreatment, applications and mechanism study, Sci. Rep. 7 (2017) 1–12. https://doi.org/10.1038/s41598-017-04754-x.

T. Watcharamongkol, P. Khaopueak, C. Seesuea, K. Wechakorn, Green hydrothermal synthesis of multifunctional carbon dots from cassava pulps for metal sensing, antioxidant, and mercury detoxification in plants, Carbon Resour. Convers. 7 (2024) 100206. https://doi.org/10.1016/j.crcon.2023.100206.

R. Zhou, C. Chen, J. Hu, X. Liao, H. Hu, Z. Tong, J. Liang, F. Huang, The self-nitrogen-doped carbon quantum dots derived from Morus alba L. leaves for the rapid determination of tetracycline, Ind. Crops Prod. 188 (2022) 115705. https://doi.org/10.1016/j.indcrop.2022.115705.

M. Vega, R.M. Gomila, J. Pons, A. Frontera, C. Rotger, A. Costa, Synthesis and fluorescence of N-squaraine dianions derived from electron-deficient primary anilines, Dye. Pigment. 207 (2022) 110746. https://doi.org/10.1016/j.dyepig.2022.110746.

C. Zhou, S. Wu, S. Qi, W. Song, C. Sun, Facile and High-yield Synthesis of N-doped Carbon Quantum Dots from Biomass Quinoa Saponin for the Detection of Co2+, J. Anal. Methods Chem. 2021 (2021). https://doi.org/10.1155/2021/9732364.

A. Paul, M. Kurian, Facile synthesis of nitrogen doped carbon dots from waste biomass: Potential optical and biomedical applications, Clean. Eng. Technol. 3 (2021) 100103. https://doi.org/10.1016/j.clet.2021.100103.

H. Shabbir, E. Csapó, M. Wojnicki, Carbon Quantum Dots: The Role of Surface Functional Groups and Proposed Mechanisms for Metal Ion Sensing, Inorganics 11 (2023). https://doi.org/10.3390/inorganics11060262.

H. Ding, X.H. Li, X.B. Chen, J.S. Wei, X.B. Li, H.M. Xiong, Surface states of carbon dots and their influences on luminescence, J. Appl. Phys. 127 (2020). https://doi.org/10.1063/1.5143819.

B. Zhang, W. Liu, X. Wu, J. Zhu, W. Hu, A. El Jaouhari, X. Liu, Facile Preparation of Fluorescent Carbon Dots from Glutathione and l -Tryptophan for Sensitive and Selective Off/On Detection of Fe3+Ions in Serum and Their Bioimaging Application, ACS Omega 7 (2022) 7853–7864. https://doi.org/10.1021/acsomega.1c06757.

N.K. Khairol Anuar, H.L. Tan, Y.P. Lim, M.S. So’aib, N.F. Abu Bakar, A Review on Multifunctional Carbon-Dots Synthesized From Biomass Waste: Design/ Fabrication, Characterization and Applications, Front. Energy Res. 9 (2021) 1–22. https://doi.org/10.3389/fenrg.2021.626549.

R. Riska, M. Marpongahtun, S. Gea, Synthesis and characterization nitrogen-doped carbon dots from candlenut shells using hydrothermal and solvothermal methods, J. Pendidik. Kim. 16 (2024) 15–22. https://doi.org/10.24114/jpkim.v16i1.56957.

F. Yan, Z. Sun, H. Zhang, X. Sun, Y. Jiang, Z. Bai, The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review, Microchim. Acta 186 (2019). https://doi.org/10.1007/s00604-019-3688-y.

M. Ali, A.S. Anjum, R. Riaz, A. Bibi, K.C. Sun, S.H. Jeong, Unraveling the surface states related Stokes shift dependent electrocatalytic activity of N-doped carbon quantum dots for photovoltaic applications, Carbon N. Y. 181 (2021) 155–168. https://doi.org/10.1016/j.carbon.2021.04.075.

S. Elkun, Green synthesis of fluorescent N-doped carbon quantum dots from castor seeds and their applications in cell imaging and pH sensing, (2024) 1–24.

K.S. Raju, G.S. Das, K.M. Tripathi, Nitrogen-doped carbon quantum dots from biomass as a FRET-based sensing platform for the selective detection of H2O2 and aspartic acid, RSC Sustain. 2 (2023) 223–232. https://doi.org/10.1039/d3su00343d.

Y. Jia, Z. Cheng, G. Wang, S. Shuang, Y. Zhou, C. Dong, F. Du, Nitrogen doped biomass derived carbon dots as a fluorescence dual-mode sensing platform for detection of tetracyclines in biological and food samples, Food Chem. 402 (2023) 134245. https://doi.org/10.1016/j.foodchem.2022.134245.

A. Dager, T. Uchida, T. Maekawa, M. Tachibana, Synthesis and characterization of Mono-disperse Carbon Quantum Dots from Fennel Seeds: Photoluminescence analysis using Machine Learning, Sci. Rep. 9 (2019) 1–10. https://doi.org/10.1038/s41598-019-50397-5.

Downloads

Published

2025-05-31