Synthesis and Characterization of Acid-Hydrolyzed Breadfruit Starch (Artocarpus altilis) Nanoparticles as a Potential Carrier for Doxorubicin

Authors

  • Cut Fatimah Zuhra Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
  • Siti Rahmawati Postgraduate School of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
  • Juliati Br. Tarigan Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia

DOI:

https://doi.org/10.32734/jcnar.v7i1.20657

Keywords:

Acid Hydrolysis, Breadfruit Starch, Carrier, Doxorubicin, Nanoparticles

Abstract

Natural starch-based materials are promising for drug delivery due to their biodegradability, abundance, and biocompatibility. This study isolated starch from breadfruit (Artocarpus altilis) and converted into nanoparticles via acid hydrolysis using HCl 2.2 N under shaking incubation at 38°C for 24 hours. The process yielded nanoparticles with a recovery efficiency of 67% and an average particle size of 347.76 nm—within the optimal range for passive tumor targeting via the enhanced permeability and retention (EPR) effect. Compared to native starch, the nanoparticles exhibited enhanced solubility and reduced viscosity, indicating improved aqueous dispersion. FTIR spectroscopy confirmed the retention of major functional groups, while SEM analysis showed distinct changes in surface morphology indicative of granule disintegration. To evaluate pharmaceutical applicability, doxorubicin hydrochloride (DOX) was employed as a model drug. The breadfruit starch nanoparticles achieved a high drug loading efficiency of 78.3%. These results demonstrate the potential of breadfruit starch nanoparticles as a sustainable, low-cost drug delivery platform and highlight the value of underutilized tropical starches in nanomedicine.

Downloads

Download data is not yet available.

References

Kemkes.go.id, Rencana Kanker Nasional 2024-2034, (2024). https://p2ptm.kemkes.go.id/documen-ptm/rencana-kanker-nasional-2024-2034. Accessed on: 09 April 2025.

X. Gao, J. Du, L. Cheng, Z. Li, C. Li, X. Ban, Z. Gu, Y. Hong, Fabrication of octenyl succinic anhydride starch grafted with folic acid and its loading potential for doxorubicin hydrochloride, Int J Biol Macromol 236 (2023). https://doi.org/10.1016/j.ijbiomac.2023.123907.

A. Sukmawati, M. Da’i, F. Zulinar, A. Hanik, Profil Pelepasan Antikanker kombinasi Doksorubisin dan Analog Kurkumin dari Nanopartikel Kitosan, URECOL (University Research Colloqium), (2017). ISSN: 2407-9189.

L.J. Ma, R. Niu, X. Wu, J. Wu, E. Zhou, X.P. Xiao, J. Chen, Quantitative evaluation of cellular internalization of polymeric nanoparticles within laryngeal cancer cells and immune cells for enhanced drug delivery, Nanoscale Res Lett 16 (2021). https://doi.org/10.1186/s11671-021-03498-y.

D. Morán, G. Gutiérrez, M.C. Blanco-López, A. Marefati, M. Rayner, M. Matos, Synthesis of starch nanoparticles and their applications for bioactive compound encapsulation, Applied Sciences (Switzerland) 11 (2021). https://doi.org/10.3390/app11104547.

A. Serrero, S. Trombotto, P. Cassagnau, Y. Bayon, P. Gravagna, S. Montanari, L. David, Polysaccharide gels based on chitosan and modified starch: Structural characterization and linear viscoelastic behavior, Biomacromolecules 11 (2010) 1534–1543. https://doi.org/10.1021/bm1001813.

C. Sri Budiyati, A. Cahyo Kumoro, R. Ratnawati, D. Susetyo Retnowati, Modifikasi Pati Sukun (Artocarpus Altilis) dengan Teknik Oksidasi Menggunakan Hidrogen Peroksida Tanpa Katalis, 37 (2016) 32–40. http://ejournal.undip.ac.id/index.php/teknik.

A.A.N. Nasution, C.F. Zuhra, J.Br. Tarigan, Particle Size Modification of Breadfruit Starch (Artocarpus altilis) into Nanoparticle Size Through Top Down Technique using Acid Hydrolysis, JKPK (Jurnal Kimia Dan Pendidikan Kimia) 9 (2024) 143. https://doi.org/10.20961/jkpk.v9i1.85602.

C.F. Zuhra, M. Ginting, W.F. Az-Zahra, Synthesis of Dual Modification Breadfruit Starch (Artocarpus communis) with Hydroxypropylation and Cross-Link, in: J Phys Conf Ser, Institute of Physics Publishing, 2020. https://doi.org/10.1088/1742-6596/1542/1/012013.

H. Xiao, T. Yang, Q. Lin, G.Q. Liu, L. Zhang, F. Yu, Y. Chen, Acetylated starch nanocrystals: Preparation and antitumor drug delivery study, Int J Biol Macromol 89 (2016) 456–464. https://doi.org/10.1016/j.ijbiomac.2016.04.037.

Y.S. Maulana, L. Kurniasari, F. Maharani, Pengaruh Suhu, Konsentrasi Asam Asetat Dan Waktu Terhadap Sifat Fisikokimia (Swelling Power, Solubility, Derajat Substitusi) Modifikasi Tepung Labu Kuning (Cucurbita Moschata) Dengan Proses Asetilasi, Jurnal Ilmiah Cendekia Eksakta, (2022) 7(1).

C.F. Zuhra, M.Z.E. Sinaga, Suharman, P.J. Situmorang, Preparation of starch from breadfruit (Artocarpus altilis) with dual modification through oxidation and cross-linking methods, Applied Food Research 5 (2025). https://doi.org/10.1016/j.afres.2025.100787.

H. Nur, I. Dalimunthe, Z. Rani, R. Yuniarti, Formulasi Sediaan Nanokrim Pemutih Kombinasi Pati Bangkuang (Pachyrhizus erosus L.) dan Pati Air Beras (Oryza sativa L.), Journal of Pharmaceutical and Sciences, (2020). https://doi.org/10.36490/journal-jps.com.

M. de Oliveira Barros, A.L.A. Mattos, J.S. de Almeida, M. de Freitas Rosa, E.S. de Brito, Effect of Ball-Milling on Starch Crystalline Structure, Gelatinization Temperature, and Rheological Properties: Towards Enhanced Utilization in Thermosensitive Systems, Foods 12 (2023). https://doi.org/10.3390/foods12152924.

S.N. Mohd Noor, Z. Zakaria, N. Hussin, F. Tufail Ahmad, The Effect of Processing Conditions on Production of Resistant Starch Type III (RS3) from Breadfruit Starch, J Agrobiotechnol 11 (2020) 48–58. https://doi.org/10.37231/jab.2020.11.2.213.

M. Harni, T. Anggraini, R. Rini, I. Suliansyah, Review Artikel: Pati pada Berbagai Sumber Tanaman, Agroteknika 5 (2022) 26–39. https://doi.org/10.55043/agroteknika.v5i1.118.

H. Marta, C. Wijaya, N. Sukri, Y. Cahyana, M. Mohammad, A Comprehensive Study on Starch Nanoparticle Potential as a Reinforcing Material in Bioplastic, Polymers (Basel) 14 (2022). https://doi.org/10.3390/polym14224875.

A. Halim, P.J. Torley, A. Farahnaky, M. Majzoobi, Investigating the Effects of Acid Hydrolysis on Physicochemical Properties of Quinoa and Faba Bean Starches as Compared to Cassava Starch, Foods 13 (2024). https://doi.org/10.3390/foods13233885.

C.F. Zuhra, S.D. Baruna, Characterization of Bioplastics from Breadfruit (Artocarpus altilis) Starch and Carboxy Methyl Cellulose (CMC) with Glycerol Plasticizer, Journal of Chemical Natural Resources 5 (2024) 152–158. https://doi.org/10.32734/jcnar.v5i2.14316.

Y. Qin, C. Liu, S. Jiang, L. Xiong, Q. Sun, Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type, Ind Crops Prod 87 (2016) 182–190. https://doi.org/10.1016/j.indcrop.2016.04.038.

N. Zohreh, S.H. Hosseini, A. Pourjavadi, Hydrazine-modified starch coated magnetic nanoparticles as an effective pH-responsive nanocarrier for doxorubicin delivery, Journal of Industrial and Engineering Chemistry 39 (2016) 203–209. https://doi.org/10.1016/j.jiec.2016.05.029.

B. Massoumi, Z. Mozaffari, M. Jaymand, A starch-based stimuli-responsive magnetite nanohydrogel as de novo drug delivery system, Int J Biol Macromol 117 (2018) 418–426. https://doi.org/10.1016/j.ijbiomac.2018.05.211.

Downloads

Published

2025-06-01