Screening of Phytochemicals and Determination of Total Phenolic and Flavonoid Contents in Different Plant Parts of Kalanchoe ceratophylla Haw.
DOI:
https://doi.org/10.32734/jcnar.v7i2.22964Keywords:
Kalanchoe ceratophylla Haw, Total Phenolic Content, Total Flavonoid Content, UV-Vis Spectrophotometry, Folin-ciocalteuAbstract
Kalanchoe ceratophylla Haw. is a medicinal plant traditionally used to address various health disorders. Its biological activities are believed to be associated with its secondary metabolites, particularly phenolics and flavonoids. Despite its traditional use, scientific information This study assesses the phytochemical composition alongside the total phenolic and flavonoid contents in the stem and leaf preparations of Kalanchoe ceratophylla Haw. Phytochemical screening confirmed the presence of alkaloids, flavonoids, tannins, and phenols in the stem extract, while the leaf extract also contained steroids. The total phenolic content was 7.43 mg GAE/100 g extract for stem and 7.11 mg GAE/100 g extract for leaves, whereas total flavonoids amounted to 0.324 mg QE/g extract (stem) and 1.621 mg QE/g extract (leaves). These findings highlight the potential use of K. ceratophylla, especially its leaves, for developing antioxidant-based herbal medicines.
Downloads
References
[1] S.S. Gololo, C.J. Semenya, M.T. Olivier, L.J. Sethoga, E.H. Mathe, R.B. Maseko, Metabolite profiling of different tissues of barleria dinteri through the gc-ms analysis, Asian Journal of Chemistry 33 (2021) 1336–1340. https://doi.org/10.14233/ajchem.2021.23192.
[2] F.H. Thamer, N. Thamer, Gas chromatography – Mass spectrometry (GC-MS) profiling reveals newly described bioactive compounds in Citrullus colocynthis (L.) seeds oil extracts, Heliyon 9 (2023). https://doi.org/10.1016/j.heliyon.2023.e16861.
[3] M.H.A. Hassan, A. Elwekeel, A. Moawad, N. Afifi, E. Amin, D. El Amir, Phytochemical constituents and biological activity of selected genera of family Crassulaceae: A review, South African Journal of Botany 141 (2021) 383–404. https://doi.org/10.1016/j.sajb.2021.05.016.
[4] M. Abdul Gani, Phenolic Compounds, (n.d.). https://doi.org/10.5772/intechopen.96740.
[5] W. Sun, M.H. Shahrajabian, Therapeutic Potential of Phenolic Compounds in Medicinal Plants—Natural Health Products for Human Health, Molecules 28 (2023). https://doi.org/10.3390/molecules28041845.
[6] J. Uddin, S.W. Ali Shah, M. Zahoor, R. Ullah, A. Alotaibi, Chalcones: The flavonoid derivatives synthesis, characterization, their antioxidant and in vitro/in vivo antidiabetic potentials, Heliyon 9 (2023). https://doi.org/10.1016/j.heliyon.2023.e22546.
[7] N.F. Shamsudin, Q.U. Ahmed, S. Mahmood, S.A.A. Shah, M.N. Sarian, M.M.A.K. Khattak, A. Khatib, A.S.M. Sabere, Y.M. Yusoff, J. Latip, Flavonoids as Antidiabetic and Anti-Inflammatory Agents: A Review on Structural Activity Relationship-Based Studies and Meta-Analysis, Int J Mol Sci 23 (2022). https://doi.org/10.3390/ijms232012605.
[8] M. Zahra, H. Abrahamse, B.P. George, Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine, Antioxidants 13 (2024). https://doi.org/10.3390/antiox13080922.
[9] D. Elsori, P. Pandey, M. Verma, N. Vadia, R. Roopashree, M. Vyas, L. Lakshmi, L. Maharana, D. Nathiya, M. Saeed, S. Obaidur Rab, F. Khan, Recent advancement in the anticancer efficacy of the natural flavonoid scutellarin: a comprehensive review, Front Pharmacol 16 (2025). https://doi.org/10.3389/fphar.2025.1579609.
[10] R.A. Syahputra, U. Harahap, A. Dalimunthe, M.P. Nasution, D. Satria, The Role of Flavonoids as a Cardioprotective Strategy against Doxorubicin-Induced Cardiotoxicity: A Review, Molecules 27 (2022). https://doi.org/10.3390/molecules27041320.
[11] Z. Zhang, X. Li, S. Sang, D.J. McClements, L. Chen, J. Long, A. Jiao, Z. Jin, C. Qiu, Polyphenols as Plant-Based Nutraceuticals: Health Effects, Encapsulation, Nano-Delivery, and Application, Foods 11 (2022). https://doi.org/10.3390/foods11152189.
[12] J.L. Mejía-Méndez, G. Sánchez-Ante, Y. Minutti-Calva, K. Schürenkämper-Carrillo, D.E. Navarro-López, R.E. Buendía-Corona, M. del C.Á. González-Chávez, A.L. Sánchez-López, J.D. Lozada-Ramírez, E. Sánchez-Arreola, E.R. López-Mena, Kalanchoe tomentosa: Phytochemical Profiling, and Evaluation of Its Biological Activities In Vitro, In Vivo, and In Silico, Pharmaceuticals 17 (2024). https://doi.org/10.3390/ph17081051.
[13] L.P. Manalu, H. Adinegoro, N. Yustiningsih, Astuti, R. Luthfiyanti, Maisaroh, W. Purwanto, Subandrio, O.B. Pongtuluran, P. Atmaji, T. Hidayat, H. Henanto, A. Asgar, A.S. Nasori, A. Triyono, B. Elya, A. Bin Arif, Impact of Drying Methods on Bioactive Compounds and Antioxidant Properties of Kalanchoe ceratophylla, Scientifica (Cairo) 2025 (2025). https://doi.org/10.1155/sci5/7146758.
[14] S.R.A. Bunya, S. Lihan, Effects of Extraction Method on Yield, Phenolic and Flavonoid Content of Leaf, Stem and Root of Cassia alata Linn., Borneo Journal of Resource Science and Technology 14 (2024) 139–148. https://doi.org/10.33736/bjrst.5701.2024.
[15] I. Susanti, R. Pratiwi, Y. Rosandi, A.N. Hasanah, Separation Methods of Phenolic Compounds from Plant Extract as Antioxidant Agents Candidate, Plants 13 (2024). https://doi.org/10.3390/plants13070965.
[16] R. Barthwal, R. Mahar, Exploring the Significance, Extraction, and Characterization of Plant-Derived Secondary Metabolites in Complex Mixtures, Metabolites 14 (2024). https://doi.org/10.3390/metabo14020119.
[17] K. Saeed, M.F. Jahangir Chughtai, A. Khaliq, A. Liaqat, T. Mehmood, M. Zubair Khalid, E.L.M. Kasongo, Impact of extraction techniques and process optimization on antioxidant and antibacterial potential of Kalanchoe pinnata leaf extract, Int J Food Prop 27 (2024) 909–926. https://doi.org/10.1080/10942912.2024.2373796.
[18] N.N. Mahmoud, M.T. Selim, Phytochemical analysis and antimicrobial activity of Silybum marianum L. via multi-solvent extraction, AMB Express 15 (2025). https://doi.org/10.1186/s13568-025-01925-2.
[19] A.N.T. Pavani, D. Sheela, L. Ramesh, A Comprehensive Quantitative Analysis and Acute Toxicity Study Of Kalanchoe Pinnata, J Appl Bioanal 10 (2024) 119–124. https://doi.org/10.53555/jab.v10i2.154.
[20] A. Andriani, B.C. Sinaga, D.N. Hasana, M. Program, S. Sistem, S. Tinggi, M. Informatika, Penerapan Algoritma K-Means Penjualan Produk Dettol Untuk Mengklasifikasikan, 1 (2024) 1–8.
[21] M. Pérez, I. Dominguez-López, R.M. Lamuela-Raventós, The Chemistry Behind the Folin-Ciocalteu Method for the Estimation of (Poly)phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern, J Agric Food Chem 71 (2023) 17543–17553. https://doi.org/10.1021/acs.jafc.3c04022.
[22] M. Samara, A. Nasser, U. Mingelgrin, Critical Examination of the Suitability of the Folin-Ciocalteu Reagent Assay for Quantitative Analysis of Polyphenols—The Case of Olive-Mill Wastewater, Am J Analyt Chem 13 (2022) 476–493. https://doi.org/10.4236/ajac.2022.1311032.
[23] A.M. Shraim, T.A. Ahmed, M.M. Rahman, Y.M. Hijji, Determination of total flavonoid content by aluminum chloride assay: A critical evaluation, LWT 150 (2021). https://doi.org/10.1016/j.lwt.2021.111932.
[24] G.A. Corrente, L. Malacaria, A. Beneduci, T. Marino, E. Furia, Quercetin and luteolin complexation with first-row transition metals in purely aqueous solutions: stoichiometry and binding site selectivity, Dalton Transactions 54 (2025) 7828–7837. https://doi.org/10.1039/d5dt00478k.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Chemical Natural Resources

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.










