Synthesis and Characterization of Amorphous Silica Nanoparticles Production from Indonesia Coal Fly Ash
DOI:
https://doi.org/10.32734/jcnar.v7i2.23383Keywords:
Nanomaterial, Waste, Coal fly ash, Silica nanoparticles, Sol-gelAbstract
Coal fly ash an inexpensive waste material rich in silica, is reused as a renewable source and has attracted widespread attention. The sol-gel process was used to synthesize silica nanoparticles based on coal fly ash. Extraction of silica in the form of alkaline sodium silicate using alkali, followed by the formation of silica gel from the neutralization of alkaline sodium silicate with acid. The treated samples were calcined at 450 °C, 650 °C, and 850 °C. The chemical composition, morphology, phase, and silica functional groups of the as-synthesized silica nanoparticle powder were investigated using X-ray fluorescence (XRF), field emission scanning electron microscopy and Electron diffraction spectroscopy (FESEM-EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Infrared (IR) spectral analysis showed that silica had hydrogen-bonded silanol and siloxane groups. The silica nanoparticles' purity was found to be as high as 97% in their amorphous state, with XRD analysis indicating this due to the broad peak observed in the 20-23° two-theta region, characterised by a spherical shape and a tendency to aggregate into clusters.
Downloads
References
[2] L. Chen, J. Liu, Y. Zhang, G. Zhang, Y. Kang, A. Chen, X. Feng, L. Shao, The toxicity of silica nanoparticles to the immune system, Nanomedicine 13 (2018) 1939–1962. https://doi.org/10.2217/nnm-2018-0076.
[3] A. Ramazani, Review on the synthesis and functionalization of SiO2 nanoparticles as solid supported catalysts, Curr Org Chem 21 (2017) 908–922.
[4] P.G. Jeelani, P. Mulay, R. Venkat, C. Ramalingam, Multifaceted Application of Silica Nanoparticles. A Review, Silicon 12 (2020) 1337–1354. https://doi.org/10.1007/s12633-019-00229-y.
[5] J.W. van Hoek, G. Heideman, J.W.M. Noordermeer, W.K. Dierkes, A. Blume, Implications of the use of silica as active filler in passenger car tire compounds on their recycling options, Materials 12 (2019). https://doi.org/10.3390/ma12050725.
[6] 7. J. Singh, Excitonic and Photonic Processes in Materials, 2015.
[7] C. Van Hoang, D.N. Thoai, N.T.D. Cam, T.T.T. Phuong, N.T. Lieu, T.T.T. Hien, D.N. Nhiem, T.D. Pham, M.H.T. Tung, N.T.T. Tran, A. Mechler, Q. V. Vo, Large-Scale Synthesis of Nanosilica from Silica Sand for Plant Stimulant Applications, ACS Omega 7 (2022) 41687–41695. https://doi.org/10.1021/acsomega.2c05760.
[8] W. Tan, K. Wang, X. He, X.J. Zhao, T. Drake, L. Wang, R.P. Bagwe, Bionanotechnology based on silica nanoparticles, Med Res Rev 24 (2004) 621–638. https://doi.org/10.1002/med.20003.
[9] K. Khan, M.A.M. Johari, M.N. Amin, M. Iqbal, Evaluation of the mechanical properties, microstructure, and environmental impact of mortar incorporating metakaolin, micro and nano-silica, Case Studies in Construction Materials 20 (2024). https://doi.org/10.1016/j.cscm.2023.e02699.
[10] A. Agrawal, G.C. Yi, Sample pretreatment with graphene materials, in: Comprehensive Analytical Chemistry, Elsevier B.V., 2020: pp. 21–47. https://doi.org/10.1016/bs.coac.2020.08.012.
[11] V.K. Yadav, M.H. Fulekar, Green synthesis and characterization of amorphous silica nanoparticles from fly ash, 2019. www.sciencedirect.comwww.materialstoday.com/proceedings2214-7853.
[12] S. Saini, A. Gupta, A.J. Mehta, S. Pramanik, Rice husk-extracted silica reinforced graphite/aluminium matrix hybrid composite, J Therm Anal Calorim 147 (2022) 1157–1166. https://doi.org/10.1007/s10973-020-10404-8.
[13] F. Farirai, M. Mupa, M.O. Daramola, An improved method for the production of high purity silica from sugarcane bagasse ash obtained from a bioethanol plant boiler, Particulate Science and Technology 39 (2021) 252–259. https://doi.org/10.1080/02726351.2020.1734700.
[14] P.E. Imoisili, K.O. Ukoba, T.C. Jen, Synthesis and characterization of amorphous mesoporous silica from palm kernel shell ash, Boletin de La Sociedad Espanola de Ceramica y Vidrio 59 (2020) 159–164. https://doi.org/10.1016/j.bsecv.2019.09.006.
[15] P. Duan, C. Yan, W. Zhou, D. Ren, Development of fly ash and iron ore tailing based porous geopolymer for removal of Cu(II) from wastewater, Ceram Int 42 (2016) 13507–13518. https://doi.org/10.1016/j.ceramint.2016.05.143.
[16] S.M.T. Al-Abboodi, E.J.A. Al-Shaibani, E.A. Alrubai, Preparation and Characterization of Nano silica Prepared by Different Precipitation Methods, in: IOP Conf Ser Mater Sci Eng, IOP Publishing Ltd, 2020. https://doi.org/10.1088/1757-899X/978/1/012031.
[17] M.E. Aphane, E.D. Maggott, F.J. Doucet, S.F. Mapolie, M. Landman, E.M. van der Merwe, Synthesis and Evaluation of Mesoporous Silica Nanoparticle Catalyst Supports Prepared from South African Coal Fly Ash, Waste Biomass Valorization 15 (2024) 5053–5068. https://doi.org/10.1007/s12649-024-02496-2.
[18] A.S. Matlob, R.A. Kamarudin, Z. Jubri, Z. Ramli, Using the Response Surface Methodology to Optimize the Extraction of Silica and Alumina from Coal Fly Ash for the Synthesis of Zeolite Na-A, Arab J Sci Eng 37 (2012) 27–40. https://doi.org/10.1007/s13369-011-0149-2.
[19] P.E. Imoisili, K.O. Ukoba, T.C. Jen, Synthesis and characterization of amorphous mesoporous silica from palm kernel shell ash, Boletin de La Sociedad Espanola de Ceramica y Vidrio 59 (2020) 159–164. https://doi.org/10.1016/j.bsecv.2019.09.006.
[20] T. Dippong, E.A. Levei, O. Cadar, A. Mesaros, G. Borodi, Sol-gel synthesis of CoFe2O4:SiO2 nanocomposites – insights into the thermal decomposition process of precursors, J Anal Appl Pyrolysis 125 (2017) 169–177. https://doi.org/10.1016/j.jaap.2017.04.005.
[21] V.K. Yadav, M.H. Fulekar, Green synthesis and characterization of amorphous silica nanoparticles from fly ash, 2019. www.sciencedirect.comwww.materialstoday.com/proceedings2214-7853.
[22] C. Zhou, Q. Gao, W. Luo, Q. Zhou, H. Wang, C. Yan, P. Duan, Preparation, characterization and adsorption evaluation of spherical mesoporous Al-MCM-41 from coal fly ash, J Taiwan Inst Chem Eng 52 (2015) 147–157. https://doi.org/10.1016/j.jtice.2015.02.014.
[23] D. Li, H. Min, X. Jiang, X. Ran, L. Zou, J. Fan, One-pot synthesis of Aluminum-containing ordered mesoporous silica MCM-41 using coal fly ash for phosphate adsorption, J Colloid Interface Sci 404 (2013) 42–48. https://doi.org/10.1016/j.jcis.2013.04.018.
[24] A. Thayyullathil, C.M. Naseera, F.M. Liyakhath, E.K. Vydhehi, S.R. Sheeja, S. Naduparambath, S. Sasidharan, Effect of Temperature and Method of Synthesis on Morphology and Phase Transition of Amorphous and Crystalline Nano Silica Extracted from Mission Grass (Pennisetum Polystachion), Silicon 16 (2024) 3491–3501. https://doi.org/10.1007/s12633-024-02932-x.
[25] J. Nayak, J. Bera, A Simple Method for Production of Humidity Indicating Silica Gel from Rice Husk Ash, 2009.
[26] K. V Selvakumar, A. Umesh, P. Ezhilkumar, S. Gayatri, P. Vinith, V. Vignesh, Extraction of Silica from Burnt Paddy Husk, 2014.
[27] C.P. Faizul, C. Abdullah, B. Fazlul, Extraction of Silica from Palm Ashvia Citric Acid Leaching Treatment, 2013.
[28] M.S.U. Rehman, M.A. Umer, N. Rashid, I. Kim, J.I. Han, Sono-assisted sulfuric acid process for economical recovery of fermentable sugars and mesoporous pure silica from rice straw, Ind Crops Prod 49 (2013) 705–711. https://doi.org/10.1016/j.indcrop.2013.06.034.
[29] N. Thuadaij, A. Nuntiya, Synthesis and Characterization of Nanosilica from Rice Husk Ash Prepared by Precipitation Method, 2008.
[30] M. Mehravar, B.B.F. Mirjalili, E. Babaei, A. Bamoniri, Nano-SiO2/DBN: an efficacious and reusable catalyst for one-pot synthesis of tetrahydrobenzo[b]pyran derivatives, BMC Chem 15 (2021). https://doi.org/10.1186/s13065-021-00760-3.
[31] R. Yuvakkumar, V. Elango, V. Rajendran, N. Kannan, High-purity nano silica powder from rice husk using a simple chemical method, J Exp Nanosci 9 (2014) 272–281. https://doi.org/10.1080/17458080.2012.656709.
[32] M. Shahjahan, Synthesis and Characterization of Silver Nanoparticles by Sol-Gel Technique, Nanoscience and Nanometrology 3 (2017) 34. https://doi.org/10.11648/j.nsnm.20170301.16.
[33] O.A. Hodhod, M.S. Khalafalla, M.S.M. Osman, ANN models for nano silica/ silica fume concrete strength prediction, Water Science 33 (2019) 118–127. https://doi.org/10.1080/11104929.2019.1669005.
[34] A.A. Alshatwi, J. Athinarayanan, V.S. Periasamy, Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications, Materials Science and Engineering C 47 (2015) 8–16. https://doi.org/10.1016/j.msec.2014.11.005.
[35] C. li Liu, S. li Zheng, S. hua Ma, Y. Luo, J. Ding, X. hui Wang, Y. Zhang, A novel process to enrich alumina and prepare silica nanoparticles from high-alumina fly ash, Fuel Processing Technology 173 (2018) 40–47. https://doi.org/10.1016/j.fuproc.2018.01.007.
[36] N.S.C. Zulkifli, I. Ab Rahman, D. Mohamad, A. Husein, A green sol-gel route for the synthesis of structurally controlled silica particles from rice husk for dental composite filler, Ceram Int 39 (2013) 4559–4567. https://doi.org/10.1016/j.ceramint.2012.11.052.
[37] J. Shim, P. Velmurugan, B.T. Oh, Extraction and physical characterization of amorphous silica made from corn cob ash at variable pH conditions via sol gel processing, Journal of Industrial and Engineering Chemistry 30 (2015) 249–253. https://doi.org/10.1016/j.jiec.2015.05.029.
[38] C. li LIU, S. hua MA, J. DING, Y. LUO, S. li ZHENG, Y. ZHANG, Kinetics of decomposition of mullite and corundum in coal fly ash under highly alkaline condition, Transactions of Nonferrous Metals Society of China (English Edition) 29 (2019) 868–875. https://doi.org/10.1016/S1003-6326(19)64997-6.
[39] H. DU, J. hong CAI, Y. song WANG, J. qing YAO, Q. CHEN, Y. CUI, X. wang LIU, Effect of partial recrystallization on microstructure and tensile properties of NiFeCoCrMn high-entropy alloy, Transactions of Nonferrous Metals Society of China (English Edition) 32 (2022) 947–956. https://doi.org/10.1016/S1003-6326(22)65841-2.
[40] L. Hai, J. Wang, Experimental study on the heat treatment reaction process of bentonite, Sci Rep 14 (2024). https://doi.org/10.1038/s41598-024-67555-z.
[41] D. Chen, A. Groenvold, H.P. Rebo, K. Moljord, A. Holmen, P. Albers, S. Bösing, H. Lansink-Rotgerink, D.K. Ross, S.F. Parker, K.S. W Sing, D.H. Everett, R.A. W Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, Reporting Physisorption Data for Gas/Solid Systems, Elsevier, 1988.
[42] T.H. Liou, C.C. Yang, Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash, Materials Science and Engineering: B 176 (2011) 521–529. https://doi.org/10.1016/j.mseb.2011.01.007.
[43] S. Arunmetha, A. Karthik, S.R. Srither, M. Vinoth, R. Suriyaprabha, P. Manivasakan, V. Rajendran, Size-dependent physicochemical properties of mesoporous nanosilica produced from natural quartz sand using three different methods, RSC Adv 5 (2015) 47390–47397. https://doi.org/10.1039/c5ra07074k.
[44] L.J. Cardenas-Flechas, A.M. Raba, J. Barba-Ortega, L.C. Moreno, M.R. Joya, Effect of Calcination Temperature on the Behavior of the Agglomerated Co 3O 4 Nanoparticles Obtained Through the Sol–Gel Method, J Inorg Organomet Polym Mater 31 (2021) 121–128. https://doi.org/10.1007/s10904-020-01685-5.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Chemical Natural Resources

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.










