Effect of Magnitude and Distance on Peak Ground Acceleration Using a Modified Akkar & Boomer (2007) GMPE for North Sumatra
DOI:
https://doi.org/10.32734/jotp.v7i2.22751Keywords:
Keywords: GMPE; Model Analysis; Eartquake; North SumateraAbstract
The Ground Motion Prediction Equation (GMPE) is very important in estimating the intensity of earthquake shocks as a basis for risk mitigation. This study aims to modify and validate the Akkar & Boomer (2007) GMPE using shallow earthquake data in the North Sumatra region for the period 2017–2023. The earthquake data were obtained from BMKG and included parameters such as magnitude, depth, and distance from the source. The analysis method involved nonlinear regression, data cleaning, and validation using residual analysis. The results showed that the maximum ground acceleration (PGA) tended to decrease nonlinearly with increasing distance from the earthquake source. The modified GMPE equation was: Log₁₀ PGA = −0.5916 + 0.5875M + 0.0576M² + (−0.8699 + − 0.1985M) Log₁₀(√R² + 8.2032²) + 0.105, with an R² value of 0.56 and prediction error values such as 0.21; MAE 0.36; RMSE 0.46; STD 0.46). Thus, the modification of GMPE based on local data can provide a more representative estimate of earthquake hazards to support mitigation efforts in North Sumatra.
Downloads
References
[1] 2017 PuSGeN, Pusat Studi Gempa Nasional (Indonesia)Pusat Penelitian dan Pengembangan Perumahan dan Permukiman (Indonesia). 2017.
[2] M. Aritonang, A. F. T. Parera, and N. Nasution, “Relokasi Hiposenter Gempabumi Di Segmen (Toru, Angkola, Barumun) Dengan Menggunakan Metode Double Difference ( Hypo-DD),” Pendidik. Fis. dan Sains, vol. 4, no. 2, pp. 24–29, 2021.
[3] U. K. Siregar, R. Sirait, and L. H. Lubis, "Identifikasi Tingkat Kerapuhan Batuan (B-value) Dengan Menggunakan Metode Likelihood di Wilayah Sumatera Utara Periode 1990-2021", Jurnal Kumparan Fisika, vol. 6, no. 1, 2023.
[4] M. Ubaidillah and Z. Fatah, “Implementasi Rapidminer Pada Klasterisasi Gempa Bumi Di Indonesia Berdasarkan Kedalaman Menggunakan K-Means,” Jurnal Ilmiah Multidisiplin Ilmu, vol. 1, no. 6, pp. 84–91, 2024.
[5] E. Fitriana, “Pendidikan siaga bencana: pendekatan dalam pembelajaran geografi,” Meretas J. Ilmu Pendidik., vol. 8, no. 1, pp. 72–87, 2021.
[6] L. M. P. Timbuleng, A. Sompotan, and F. Tumimomor, “Analisis Pergerakan Tanah Berdasarkan Peak Ground Velocity (PGV) Akibat Gempa Bumi di Luwuk,” J. Pendidik. Fis. Unima, vol. 1, no. 2, pp. 44–51, 2020.
[7] A. Octhav, A. M. Julius, M. Muzli, and A. Rudyanto, “Modified of Ground Motion Prediction Equation in Indonesia, case study: South and South-east of Sulawesi at 2011-2015,” AIP Conf. Proc., vol. 1857, p. 020003, 2017.
[8] National Institute of Standards and Technology (NIST), Soil-Structure Soil-Structure Interaction for Building Structures, California: National Institute of Standards and Technology, p. 292, 2012.
[9] S. Akkar and J. J. Bommer, “Empirical prediction equations for peak ground velocity derived from strong-motion records from Europe and the Middle East,” Bull. Seismol. Soc. Am., vol. 97, no. 2, pp. 511–530, 2007.
[10] D. M. Boore and G. M. Atkinson, “Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s,” Earthq. Spectra, vol. 24, no. 1, pp. 99–138, 2008.
[11] K. W. Campbell and Y. Bozorgnia, “NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s,” Earthq. Spectra, vol. 24, no. 1, pp. 139–171, 2008.
[12] E. Kalkan and A. K. Chopra, Practical Guidelines to Select and Scale Earthquake Records for Nonlinear Response History Analysis of Structures, Virginia: Earthquake Engineering Research Institute, pp. 1–113, 2010.
[13] G. M. Atkinson and D. M. Boore, “Erratum to Empirical Ground-Motion Relations for Subduction Zone Earthquakes and Their Application to Cascadia and Other Regions,” Bull. Seismol. Soc. Am., vol. 98, no. 5, pp. 2567–2569, 2008.
[14] G. Cua et al., “Best Practices" for using macroseismic intensity and ground motion intensity conversion equations for Hazard and Loss Models in GEM1 PAGER: Prompt Assessment of Global Earthquakes for Response View project, Australia: GEM Foundation, 2010.
[15] J. Dauglas, Ground-motion prediction equations, Berkeley: Pacific Earthquake Engineering Research Center, 2011.
[16] S. N. Rahma, L. H. Lubis, R. Sirait, R. Pratama, and A. Wijaya, “Modification of The Attenuation Equation for Peak Ground Acceleration (PGA) In The North Sumatera Region,” Jurnal Neutrino: Jurnal Fisika dan Aplikasinya, vol. 17, no. 1, pp. 10–16, 2024.
[17] J. F. Hair, C. M. Ringle, and M. Sarstedt, “PLS-SEM: Indeed a silver bullet,” J. Mark. Theory Pract., vol. 19, no. 2, pp. 139–152, 2011.
[18] D. M. Boore, J. P. Stewart, E. Seyhan, and G. M. Atkinson, “NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes,” Earthq. Spectra, vol. 30, no. 3, pp. 1057–1085, 2014.
[19] N. Abrahamson and W. Silva, “Summary of the Abrahamson & Silva NGA ground-motion relations,” Earthq. Spectra, vol. 24, no. 1, pp. 67–97, 2008.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Technomaterial Physics

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.






