Diameter-Height relationship model for Shorea assamica in secondary tropical rainforest, South Borneo
DOI:
https://doi.org/10.32734/jsi.v8i2.18749Keywords:
Forest Inventory, Power Model, Reliability, Site Species-Specific, validationAbstract
Diameter-height relationship model is generally developed to facilitate the quantification of tree height at the individual level. However, the model’s reliability principally varies due to the influence of certain factors like site quality and type of species. Thus, a site species-specific model is recommended to support sustainable forest management. This study aims to evaluate the best-fit model for estimating the tree height of Shorea assamica in the secondary tropical rainforest, South Borneo. Data from forest inventory consisting of 1,440 tree diameter at breast height (DBH) and height measurements were used to evaluate five alternative models, i.e., Linear, Power, Exponential, Sigmoid, and Gompertz. These data were randomly split into two datasets, i.e., initial model development (1,009 trees) and model validation (431 trees). The model reliability was assessed and ranked using the coefficient of determination (R2), residual standard error (RSE), akaike information criterion (AIC), mean absolute error (MAE), and root means square error (RMSE). The results of the study obtained an average tree diameter of 42.8 cm with the inverval of 22-99 cm and a mean tree height of 16.6 m with the distribution of 11-31 m. The Power model showed the best fit to explain the relationship model between the diameter and height of the S. assamica with an R2 of 74% and an RMSE of 1.72 m. It indicated Power model could facilitate more efficient tree height estimation of S. assamica in the study site
Downloads
References
Abrantes, K. K. B., Paiva, L. M., De Almeida, R. G., Urbano, E., Ferreira, A. D., & Mazucheli, J. (2019). Modeling the individual height and volume of two integrated crop-livestock-forest systems of Eucalyptus spp. In the Brazilian Savannah. Acta Scientiarum, 41(1), 1–8. https://doi.org/10.4025/actasciagron.v41i1.42626
Altanzagas, B., Luo, Y., Altansukh, B., Dorjsuren, C., Fang, J., & Hu, H. (2019). Allometric equations for estimating the aboveground biomass of five forest tree species in Khangai, Mongolia. Forests, 10(8), 1–17. https://doi.org/10.3390/f10080661
Cheng, C. L., Shalabh, & Garg, G. (2014). Coefficient of determination for multiple measurement error models. Journal of Multivariate Analysis, 126, 137–152. https://doi.org/10.1016/j.jmva.2014.01.006
Cristina Costa Silva, G., Calegario, N., Araújo Lopes da Silva, A., Pereira da Cruz, J., & Garcia Leite, H. (2018). Site index curves in thinned and non-thinned eucalyptus stands. Forest Ecology and Management, 408, 36–44. https://doi.org/10.1016/j.foreco.2017.10.036
Cui, K., Wu, X., Zhang, C., Zhao, X., & von Gadow, K. (2022). Estimating height-diameter relations for structure groups in the natural forests of Northeastern China. Forest Ecology and Management, 519, 120298. https://doi.org/10.1016/j.foreco.2022.120298
Dey, T., Ahmed, S., & Islam, A. (2021). Relationships of tree height-diameter at breast height (DBH) and crown diameter-DBH of Acacia auriculiformis plantation. Asian Journal of Forestry, 5(2), 71–75. https://doi.org/10.13057/asianjfor/r050203
Hardjana, A. K. (2013). Correlation model between height and crown diameter with diameter at breast height on Shorea macrophylla and Shorea stenoptera stand in Semboja, Sanggau Regency. Jurnal Penelitian Dipterokarpa, 7(1), 7–18. https://doi.org/10.20886/jped.2013.7.1.7-18
Hess, A. F., Minatti, M., Costa, E. A., Schorr, L. P. B., da Rosa, G. T., de Arruda Souza, I., Borsoi, G. A., Liesenberg, V., Stepka, T. F., & Abatti, R. (2021). Height-to-diameter ratios with temporal and dendro/morphometric variables for Brazilian pine in south Brazil. Journal of Forestry Research, 32(1), 191–202. https://doi.org/10.1007/s11676-019-01084-8
Ige, P. O., Akinyemi, G. O., & Smith, A. S. (2013). Nonlinear growth functions for modeling tree height-diameter relationships for Gmelina arborea (Roxb.) in south-west Nigeria. Forest Science and Technology, 9(1), 20–24. https://doi.org/10.1080/21580103.2013.773662
Khan, M. N. I., Shil, M. C., Azad, M. S., Sadath, M. N., Feroz, S. M., & Mollick, A. S. (2018). Allometric relationships of stem volume and stand level carbon stocks at varying stand density in Swietenia macrophylla King plantations, Bangladesh. Forest Ecology and Management, 430(September), 639–648. https://doi.org/10.1016/j.foreco.2018.09.002
Kusmana, C. (2011). Forest resources and forestry in Indonesia. Forest Science and Technology, 7(4), 155–160. https://doi.org/10.1080/21580103.2011.625241
Li, X., Zhang, Y., Yang, S., Wu, C., Shao, Q., & Feng, X. (2020). The genetic control of leaf and petal allometric variations in Arabidopsis thaliana. BMC Plant Biology, 20(1), 1–11. https://doi.org/10.1186/s12870-020-02758-w
Lisboa, S. N., Guedes, B. S., Ribeiro, N., & Sitoe, A. (2018). Biomass allometric equation and expansion factor for a mountain moist evergreen forest in Mozambique. Carbon Balance and Management, 13(1), 1–16. https://doi.org/10.1186/s13021-018-0111-7
Lumbres, R. I. C., Lee, Y. J., Yun, C. W., Koo, C. D., Kim, S. Bin, Son, Y. M., Lee, K. H., Won, H. K., Jung, S. C., Seo, Y. O., Ian, R., Lee, Y. J., Yun, C. W., Koo, C. D., Kim, S. Bin, Son, Y. M., Lee, K. H., Won, H. K., Jung, S. C., & Seo, Y. O. (2015). DBH-height modeling and validation for Acacia mangium and Eucalyptus pellita in Korintiga Hutani Plantation , Kalimantan , Indonesia. Forest Science and Technology, 11(3), 119–125. https://doi.org/10.1080/21580103.2014.957356
Lumbres, R. I. C., Seo, Y. O., Son, Y. M., Doyog, N. D., & Lee, Y. J. (2018). Height-age model and site index curves for Acacia mangium and Eucalyptus pellita in Indonesia in Indonesia. Forest Science and Practice, 14(2), 91–96. https://doi.org/10.1080/21580103.2018.1452798
Magalhães, T. M. (2017). Site-specific height-diameter and stem volume equations for Lebombo-ironwood. Annals of Forest Research, 60(2), 297–312. https://doi.org/10.15287/afr.2017.838
Maulana, S. I., Wibisono, Y., & Utomo, S. (2016). Development of Local Allometric Equation To Estimate Total Aboveground Biomass in Papua Tropical Forest. Indonesian Journal of Forestry Research, 3(2), 107–118. https://doi.org/10.20886/ijfr.2016.3.2.107-118
Mugasha, W. A., Bollandsås, O. M., & Eid, T. (2013). Relationships between diameter and height of trees in natural tropical forest in Tanzania. Southern Forests, 75(4), 221–237. https://doi.org/10.2989/20702620.2013.824672
Mulyana, B., Soeprijadi, D., & Purwanto, R. H. (2020). Allometric model of wood biomass and carbon (Gliricidia Sepium (Jacq.) Kunth Ex Walp.) at bioenergy plantation in Indonesia. Forestry Ideas, 26(1), 153–164.
Nakagawa, S., Johnson, P. C. D., & Schielzeth, H. (2017). The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society Interface, 14(134). https://doi.org/10.1098/rsif.2017.0213
Ogana, F. N., & Ercanli, I. (2022). Modelling height-diameter relationships in complex tropical rain forest ecosystems using deep learning algorithm. Journal of Forestry Research, 33(3), 883–898. https://doi.org/10.1007/s11676-021-01373-1
Pamoengkas, P., Siregar, I. Z., & Dwisutono, A. N. (2018). Stand structure and species composition of merbau in logged-over forest in Papua, Indonesia. Biodiversitas, 19(1), 163–171. https://doi.org/10.13057/biodiv/d190123
Pélabon, C., Tidière, M., Lemaître, J. F., & Gaillard, J. M. (2018). Modelling allometry: Statistical and biological considerations - a reply to Packard. Biological Journal of the Linnean Society, 125(3), 664–671. https://doi.org/10.1093/biolinnean/bly141
Poschenrieder, W., Rais, A., van de Kuilen, J. W. G., & Pretzsch, H. (2016). Modelling sawn timber volume and strength development at the individual tree level– Essential model features by the example of Douglas fir. Silva Fennica, 50(1), 1–23. https://doi.org/10.14214/sf.1393
Raptis, D. I., Kazana, V., Kazaklis, A., & Stamatiou, C. (2021). Mixed-effects height–diameter models for black pine (Pinus nigra Arn.) forest management. Trees - Structure and Function, 35(4), 1167–1183. https://doi.org/10.1007/s00468-021-02106-x
Sadono, R., Wardhana, W., Idris, F., & Wirabuana, P. Y. A. P. (2022). Allometric Equation for Estimating Energy Production of Eucalyptus urophylla in Dryland Ecosystems at East Nusa Tenggara. Journal of Tropical Forest Management, 28(1), 32–39. https://doi.org/10.7226/jtfm.28.1.32
Sadono, R., Wardhana, W., Wirabuana, P. Y. A. P., & Idris, F. (2021). Allometric equations for estimating aboveground biomass of Eucalytpus urophylla S.T. Blake in East Nusa Tenggara. Journal of Tropical Forest Management, 27(1), 24–31. https://doi.org/10.7226/jtfm.27.1.24
Salekin, S., Mason, E. G., Morgenroth, J., Bloomberg, M., & Meason, D. F. (2019). Modelling the effect of microsite influences on the growth and survival of juvenile Eucalyptus globoidea (Blakely) and Eucalyptus bosistoana (F. Muell) in New Zealand. Forests, 10(10), 1–21. https://doi.org/10.3390/f10100857
Setiahadi, R. (2021). Comparison of individual tree aboveground biomass estimation in community forests using allometric equation and expansion factor in magetan, east java, indonesia. Biodiversitas, 22(9), 3899–3909. https://doi.org/10.13057/biodiv/d220936
Sharma, R. P., Vacek, Z., Vacek, S., & KuÄera, M. (2019). Modelling individual tree height–diameter relationships for multi-layered and multi-species forests in central Europe. Trees, 33(1), 103–119. https://doi.org/10.1007/s00468-018-1762-4
Shen, J., Hu, Z., Sharma, R. P., Wang, G., Meng, X., Wang, M., Wang, Q., & Fu, L. (2020). Modeling height-diameter relationship for poplar plantations using combined-optimization multiple hidden layer back propagation neural network. Forests, 11(4), 1–18. https://doi.org/10.3390/F11040442
Skovsgaard, J. P., & Vanclay, J. K. (2008). Forest site productivity: A review of the evolution of dendrometric concepts for even-aged stands. Forestry, 81(1), 13–31. https://doi.org/10.1093/forestry/cpm041
Sumida, A., Miyaura, T., & Torii, H. (2013). Relationships of tree height and diameter at breast height revisited: Analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand. Tree Physiology, 33(1), 106–118. https://doi.org/10.1093/treephys/tps127
Sun, H., Wang, X., & Fan, D. (2020). Effects of climate, biotic factors, and phylogeny on allometric relationships: testing the metabolic scaling theory in plantations and natural forests across China. Forest Ecosystems, 7(1), 1–14. https://doi.org/10.1186/s40663-020-00263-y
Suyanto, Nugroho, Y., Harahap, M. M., Kusumaningrum, L., & Wirabuana, P. Y. A. P. (2022). Spatial distribution of vegetation diversity, timber production, and carbon storage in secondary tropical rainforest at South Kalimantan, Indonesia. Biodiversitas, 23(12), 6147–6154. https://doi.org/10.13057/biodiv/d231208
Temesgen, H., Zhang, C. H., & Zhao, X. H. (2014). Modelling tree height-diameter relationships in multi-species and multi-layered forests: A large observational study from Northeast China. Forest Ecology and Management, 316, 78–89. https://doi.org/10.1016/j.foreco.2013.07.035
Tetemke, B. A., Birhane, E., Rannestad, M. M., & Eid, T. (2019). Allometric models for predicting aboveground biomass of trees in the dry afromontane forests of Northern Ethiopia. Forests, 10(12), 1–15. https://doi.org/10.3390/F10121114
Tian, D., Jiang, L., Shahzad, M. K., He, P., Wang, J., & Yan, Y. (2022). Climate-sensitive tree height-diameter models for mixed forests in Northeastern China. Agricultural and Forest Meteorology, 326, 1–12. https://doi.org/10.1016/j.agrformet.2022.109182
Vega-Nieva, D. J., Valero, E., Picos, J., & Jiménez, E. (2015). Modeling the above and belowground biomass of planted and coppiced Eucalytpus globulus stands in NW Spain. Annals of Forest Science, 72(7), 967–980. https://doi.org/10.1007/s13595-015-0493-6
Widiyatno, Hidayati, F., Hardiwinoto, S., Indrioko, S., Purnomo, S., Jatmoko, Tani, N., & Naiem, M. (2020). Selection of dipterocarp species for enrichment planting in a secondary tropical rainforest. Forest Science and Technology, 16(4), 206–215. https://doi.org/10.1080/21580103.2020.1831620
Wirabuana, P. Y. A. P., Hendrati, R. L., Baskorowati, L., Susanto, M., Mashudi, M., Budi Santoso Sulistiadi, H., Setiadi, D., Sumardi, D., & Alam, S. (2022). Growth performance, biomass accumulation, and energy production in age series of clonal teak plantation. Forest Science and Technology, 18(2), 67–75. https://doi.org/10.1080/21580103.2022.2063952
Wirabuana, P. Y. A. P., Sadono, R., & Matatula, J. (2022). Competition influences tree dimension, biomass distribution, and leaf area index of Eucalyptus Urophylla in dryland ecosystems at East Nusa Tenggara. Agriculture and Forestry, 68(1), 191–206. https://doi.org/10.17707/AgricultForest.68.1.12
Wirabuana, P. Y. A. P., Setiahadi, R., Sadono, R., Lukito, M., Martono, D. S., & Matatula, J. (2020). Allometric equations for estimating biomass of community forest tree species in Madiun , Indonesia. Biodiversitas, 21(9), 4291–4300. https://doi.org/10.13057/biodiv/d210947
Yang, S. I., & Burkhart, H. E. (2020). Evaluation of total tree height subsampling strategies for estimating volume in loblolly pine plantations. Forest Ecology and Management, 461, 117878. https://doi.org/10.1016/j.foreco.2020.117878
Zhang, D. (2017). A Coefficient of Determination for Generalized Linear Models. American Statistician, 71(4), 310–316. https://doi.org/10.1080/00031305.2016.1256839
Zhu, G., Hu, S., Chhin, S., Zhang, X., & He, P. (2019). Modelling site index of Chinese fir plantations using a random effects model across regional site types in Hunan province, China. Forest Ecology and Management, 446, 143–150. https://doi.org/10.1016/j.foreco.2019.05.039
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.