Biochar from Raw Materials Arundo Spp; Effect on Corn Plant Growth and Production

Authors

  • Syahrullah Syahrullah UNIVERSITAS PUANGRIMAGGALATUNG
  • Guna Darman Program Studi Agroteknologi Fakultas Pertanian Universitas Puangrimaggalatung
  • Muhammad Adhan Program Studi Agroteknologi Fakultas Pertanian Universitas Puangrimaggalatung
  • Ambo Upe Program Studi Agribisnis Fakultas Pertanian Universitas Puangrimaggalatung
  • Tenri Sau Program Studi Agribisnis Fakultas Pertanian Universitas Puangrimaggalatung

DOI:

https://doi.org/10.32734/jpt.v10i2.15181

Keywords:

Bahan baku, Biochar, Arundo spp. jagung

Abstract

Biochar is widely used for water and soil remediation due to its local availability and low production costs. However, its effectiveness depends on the physicochemical properties related to the raw material and pyrolysis temperature, as well as the environmental conditions where it is used. Additionally, biochar is susceptible to natural aging caused by changes in soil or sediment moisture, which can alter its redox properties and interactions with contaminants such as arsenic. Therefore, we are interested in conducting fundamental research on raw materials from grass types and their influence on the growth and production of QPM corn plants. In this research, we carried out laboratory content tests and field experiments. The treatments were: p0 control, p1 = 3 tons ha-1 biochar, p2 = 6 tons ha-1 biochar, p3 = 9 tons ha-1, p4 = 12 tons ha-1, p5 = 15 tons ha-1. The experimental results showed that the administration of biochar made from Arundo Spp. 12 tons Ha-1 can increase the effective growth and production of corn plants

Downloads

Download data is not yet available.

References

Borchard, N., Schirrmann, M., Cayuela, M. L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizábal, T., Sigua, G., Spokas, K., Ippolito, J. A., & Novak, J. (2019a). Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. In Science of the Total Environment (Vol. 651, pp. 2354–2364). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2018.10.060

Borchard, N., Schirrmann, M., Cayuela, M. L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizábal, T., Sigua, G., Spokas, K., Ippolito, J. A., & Novak, J. (2019b). Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Science of the Total Environment, 651, 2354–2364. https://doi.org/10.1016/j.scitotenv.2018.10.060

Brewer, C. E., Loynachan, T. E., Schmidt-Rohr, K., Shanks, B. H., & Vigil, D. R. (2012). Biochar characterization and engineering.

Chen, H., Ma, J., Wei, J., Gong, X., Yu, X., Guo, H., & Zhao, Y. (2018). Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates. Science of the Total Environment, 635, 333–342. https://doi.org/10.1016/j.scitotenv.2018.04.127

El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., Zimmerman, A. R., Ahmad, M., Shaheen, S. M., & Ok, Y. S. (2019). Biochar application to low fertility soils: A review of current status, and future prospects. In Geoderma (Vol. 337, pp. 536–554). Elsevier B.V. https://doi.org/10.1016/j.geoderma.2018.09.034

Gao, S., Harrison, B. P., Thao, T., Gonzales, M. L., An, D., Ghezzehei, T. A., Diaz, G., & Ryals, R. A. (2023). Biochar co-compost improves nitrogen retention and reduces carbon emissions in a winter wheat cropping system. GCB Bioenergy. https://doi.org/10.1111/gcbb.13028

Guo, S., Wu, J., Han, Z., Li, Z., Xu, P., Liu, S., Wang, J., & Zou, J. (2022). The legacy effect of biochar application on soil nitrous oxide emissions. GCB Bioenergy. https://doi.org/10.1111/gcbb.13022

Hidayat, B., Ulina S, N. W., & Utami, A. (2022). Utilization of Biomass in The Form Biochar and Compost on Soil Properties. Jurnal Pertanian Tropik, 9(3), 182–191. https://doi.org/10.32734/jpt.v9i3

Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., Cayuela, M. L., Sigua, G., Novak, J., Spokas, K., & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. In Biochar (Vol. 2, Issue 4, pp. 421–438). Springer Science and Business Media B.V. https://doi.org/10.1007/s42773-020-00067-x

Joseph, S., Cowie, A. L., Van Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela, M. L., Graber, E. R., Ippolito, J. A., Kuzyakov, Y., Luo, Y., Ok, Y. S., Palansooriya, K. N., Shepherd, J., Stephens, S., Weng, Z., & Lehmann, J. (2021). How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. In GCB Bioenergy (Vol. 13, Issue 11, pp. 1731–1764). John Wiley and Sons Inc. https://doi.org/10.1111/gcbb.12885

Laghari, M., Naidu, R., Xiao, B., Hu, Z., Mirjat, M. S., Hu, M., Kandhro, M. N., Chen, Z., Guo, D., Jogi, Q., Abudi, Z. N., & Fazal, S. (2016). Recent developments in biochar as an effective tool for agricultural soil management: a review. In Journal of the Science of Food and Agriculture (Vol. 96, Issue 15, pp. 4840–4849). John Wiley and Sons Ltd. https://doi.org/10.1002/jsfa.7753

Li, Z., Unzué-Belmonte, D., Cornelis, J. T., Linden, C. Vander, Struyf, E., Ronsse, F., & Delvaux, B. (2019). Effects of phytolithic rice-straw biochar, soil buffering capacity and pH on silicon bioavailability. Plant and Soil. https://doi.org/10.1007/s11104-019-04013-0

Liu, L., Tan, Z., Gong, H., & Huang, Q. (2019). Migration and Transformation Mechanisms of Nutrient Elements (N, P, K) within Biochar in Straw-Biochar-Soil-Plant Systems: A Review. In ACS Sustainable Chemistry and Engineering (Vol. 7, Issue 1, pp. 22–32). American Chemical Society. https://doi.org/10.1021/acssuschemeng.8b04253

Simanjuntak, D. M., Rahmawati, N., Program, R. S., Agroteknologi, S., Pertanian, F., & Medan, U. (2018a). Respons Pertumbuhan dan Produksi Tanaman Jagung Manis Terhadap Aplikasi Biochar dan Pupuk Organik Cair Growth Response and Production of Sweet Corn Crop by Application of Biochar and Liquid Organic Fertilizer. In Jurnal Pertanian Tropik e-ISSN (Vol. 5, Issue 3). https://jurnal.usu.ac.id/index.php/Tropik

Simanjuntak, D. M., Rahmawati, N., Program, R. S., Agroteknologi, S., Pertanian, F., & Medan, U. (2018b). Respons Pertumbuhan dan Produksi Tanaman Jagung Manis Terhadap Aplikasi Biochar dan Pupuk Organik Cair Growth Response and Production of Sweet Corn Crop by Application of Biochar and Liquid Organic Fertilizer. In Jurnal Pertanian Tropik e-ISSN (Vol. 5, Issue 3). https://jurnal.usu.ac.id/index.php/Tropik

Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105(1), 47–82. https://doi.org/10.1016/S0065-2113(10)05002-9

Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. In Renewable and Sustainable Energy Reviews (Vol. 55, pp. 467–481). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.10.122

Wang, Y., Liu, Y., Zhan, W., Zheng, K., Wang, J., Zhang, C., & Chen, R. (2020). Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations. Science of the Total Environment, 729, 139060. https://doi.org/10.1016/j.scitotenv.2020.139060

Published

2024-01-23

How to Cite

Syahrullah, S., Guna Darman, Muhammad Adhan, Ambo Upe, & Tenri Sau. (2024). Biochar from Raw Materials Arundo Spp; Effect on Corn Plant Growth and Production. Jurnal Online PERTANIAN TROPIK, 10(2), 51-57. https://doi.org/10.32734/jpt.v10i2.15181